MATH 162

1. (Review) For each of the following infinite series, determine convergence or divergence. In the case of convergence, find the sum of the series:
(a) $\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$
(b) $\sum_{n=0}^{\infty} \frac{5}{9^{n}}$
(c) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n}$
(d) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
(e) $\sum_{n=1}^{\infty} \cos \left(\frac{5}{n}\right)$
(f) $0.123123123 \ldots$
2. For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.
(a) $\sum_{n=3}^{\infty}(-1)^{n} \frac{13}{(\ln n)^{13}}$
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{(k+3)\left(k^{2}+5\right)}{(k+13 \ln k)^{4}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{\left(1+\frac{1}{n}\right)^{n^{2}}}$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\ln \left(e^{n}+e^{-n}\right)}$
(e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{13}}{(n+13)!}$
3. For each power series below, determine the radius of convergence and the interval of convergence. Study the behavior of each power series at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{13^{n}}{n(n+13)} x^{n}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)}(x-4)^{n}$
(c) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n+7}}(x+13)^{n}$
4. (a) Find the $3^{\text {rd }}$ order Maclaurin polynomial of $\cosh x$.
(b) Find the $5^{\text {th }}$ order Taylor polynomial of $\cos x$ centered at $x=\pi / 2$.
5. Find the $4^{\text {th }}$ order Taylor polynomial of e^{x} centered at $\mathrm{x}=2$.
6. Find the $3^{\text {rd }}$ order Maclaurin polynomial of

$$
f(x)=4+(x+13)^{2}+(x+13)^{3}
$$

7. By differentiating the power series expansion of $y=1 /(1-x)$, find the value of

$$
\sum_{k=0}^{\infty} \frac{k}{13^{k}}
$$

8. Find the first five non-zero terms of the Maclaurin series expansion of

$$
h(x)=\left(1+2 x^{2}\right) \mathrm{e}^{3 x} .
$$

9. Let $f(x)=x^{8} e^{5 x}$. Compute $f^{(100)}(0)$. Do not simplify your answer.
10. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)} x^{n}
$$

11. Find the radius of convergence of the power series:

$$
\sum_{n=0}^{\infty} n!x^{2^{n}}
$$

12. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{n}} x^{n}
$$

13. Without using l'Hôpital's rule, calculate the following limit. Show your work!

14. Let $\mathrm{G}(\mathrm{x})=\mathrm{x}^{3} \cosh (3 \mathrm{x})$. Using an appropriate Maclaurin series, compute $\mathrm{G}^{(2017)}(0)$. (Do not try to simplify your answer.)
15. Find the first four non-zero terms of the Maclaurin series for each of the following:
(a) $\frac{e^{2 x}}{\cosh x}$
(b) $\frac{\ln (1+x)}{1+x^{2}}$
(c) $e^{x^{2}} \sin 2 x$
16. (a) Express $\left(\frac{13+i}{1+i}\right)(1-2 i)+4+5 i$ as a complex number of the form $a+b i$.
(b) By expressing -1 as an appropriate complex power of e, calculate the five fifth roots of $-i$.

Express your answers in the form a + bi.
(c) Using Euler's formula, express $\cos (4 \mathrm{x})$ in terms of $\cos \mathrm{x}$ and $\sin \mathrm{x}$.
17. Using division of power series, find the first three non-zero terms of the Maclaurin series expansion of

$$
f(x)=\frac{e^{2 x}+1}{\cos x}
$$

18. Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$
g(x)=e^{x^{2}}\left(1+x^{2}+x^{3}\right)
$$

19. Determine the interval of convergence of the following power series. (You need not study end-point behavior.)

$$
\sum_{n=1}^{\infty} \frac{n^{13} 13^{n}}{\sqrt{n+2016}}(x-13)^{n}
$$

20. Analyze the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+4}}{\left(n^{1 / 3}+1789\right)^{5}}
$$

21. Prove Euler's formula.
22. What is the relationship between $\cosh \mathrm{x}$ and $\cos \mathrm{x}$? between $\sinh \mathrm{x}$ and $\sin \mathrm{x}$?
23. The graph shows the area between the graphs of $f(x)=6 \cos (\sqrt{2 x})$ and $g(x)=x^{2}+x$. Let $\left(x_{0}, y_{0}\right)$ be the intersection point between the graphs of $f(x)$ and $g(x)$.

(a) Compute $\mathrm{P}(\mathrm{x})$, the function containing the first three nonzero terms of the Taylor series about $\mathrm{x}=0$ of $\mathrm{f}(\mathrm{x})=6 \cos (\sqrt{2 x})$.
(b) Use $\mathrm{P}(\mathrm{x})$ to approximate the value of x_{0}.
(c) Use $\mathrm{P}(\mathrm{x})$ and the value of x_{0} you computed in the previous question to write an integral that approximates the value of the shaded area. Find the
(d) Graph $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ in Wolfram Alpha or your calculator. Use the graphs to find an approximate value for x_{0}.
(e) Write a definite integral in terms of $f(x)$ and $g(x)$ that represents the 1.0 value of the shaded area. Find its value using your Wolfram Alpha or your calculator.
24. (a) Find the Maclaurin series of $\sin \left(\mathrm{x}^{2}\right)$. Your answer should include a formula for the general term of the series.
(b) Let m be a positive integer. Find the Maclaurin expansion of $\cos (m \pi x)$. Your answer should include a formula for the general term of the series.
(c) Use the second degree Maclaurin polynomial of sin and \cos to approximate the vale of (The number b_{m} is called a Fourier coefficient of the function. These numbers play a key role in Fourier
25. (a) Find the Maclaurin series of $\sin \left(x^{2}\right)$. Your answer should include a formula for the general term in the series.
(b) Let m be a positive integer, find the Maclaurin series of $\cos (m \pi x)$. Your answer should include a formula for the general term in the series.
(c) Use the second degree Maclaurin polynomials of $\sin \left(\mathrm{x}^{2}\right)$ and $\cos (\mathrm{m} \pi \mathrm{x})$ to approximate the value of b_{m}, where

$$
b_{m}=\int_{-1}^{1} \sin \left(x^{2}\right) \cos (m \pi x) d x
$$

(The number b_{m} is called a Fourier coefficient of the function $\sin \left(x^{2}\right)$.
These numbers play a key role in Fourier analysis, a subject with widespread applications in engineering and the sciences.)

Jean-Baptiste Joseph Fourier (1768-1830)

