MATH 162

PRACTICE TEST III

1. (Review) For each of the following infinite series, determine convergence or divergence. In the case of convergence, find the sum of the series:

(a)
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{5}{9^n}$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

(e)
$$\sum_{n=1}^{\infty} \cos\left(\frac{5}{n}\right)$$

- **(f)** 0.123123123...
- **2.** For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.

(a)
$$\sum_{n=3}^{\infty} (-1)^n \frac{13}{(\ln n)^{13}}$$

(b)
$$\sum_{k=1}^{\infty} (-1)^k \frac{(k+3)(k^2+5)}{(k+13 \ln k)^4}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\left(1 + \frac{1}{n}\right)^{n^2}}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(e^n + e^{-n})}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^{13}}{(n+13)!}$$

3. For each power series below, determine the *radius of convergence* and the *interval of convergence*. Study the behavior of each power series at the *endpoints*.

(a)
$$\sum_{n=1}^{\infty} \frac{13^n}{n(n+13)} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)} (x-4)^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n+7}} (x+13)^n$$

- **4.** (a) Find the 3^{rd} order Maclaurin polynomial of $\cosh x$.
- (b) Find the 5th order Taylor polynomial of $\cos x$ centered at $x = \pi/2$.
- 5. Find the 4^{th} order Taylor polynomial of e^x centered at x = 2.
- 6. Find the 3rd order Maclaurin polynomial of $f(x) = 4 + (x+13)^2 + (x+13)^3$
- 7. By differentiating the power series expansion of y = 1/(1 x), find the value of

$$\sum_{k=0}^{\infty} \frac{k}{13^k}$$

- 8. Find the *first five* non-zero terms of the Maclaurin series expansion of $h(x) = (1 + 2x^2) e^{3x}.$
- **9**. Let $f(x) = x^8 e^{5x}$. Compute $f^{(100)}(0)$. Do not simplify your answer.
- 10. Find the radius of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7)...(2n-1)} x^n$$

11. Find the radius of convergence of the power series:

$$\sum_{n=0}^{\infty} n! x^{2^n}$$

12. Find the radius of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n} x^n$$

13. Without using l'Hôpital's rule, calculate the following limit. Show your work!

$$\lim_{t \to 0} \frac{te^{4t} - \sin(3t) + 2t - 4t^2}{t^3}$$

- 14. Let $G(x) = x^3 \cosh(3x)$. Using an appropriate Maclaurin series, compute $G^{(2017)}(0)$. (Do not try to simplify your answer.)
- 15. Find the first four non-zero terms of the Maclaurin series for each of the following:

(a)
$$\frac{e^{2x}}{\cosh x}$$

$$(b) \quad \frac{\ln(1+x)}{1+x^2}$$

- (c) $e^{x^2} \sin 2x$
- 16. (a) Express $\left(\frac{13+i}{1+i}\right)(1-2i)+4+5i$ as a complex number of the form a+bi.
 - (b) By expressing -1 as an appropriate complex power of e, calculate the five fifth roots of -i.

Express your answers in the form a + bi.

- (c) Using Euler's formula, express cos(4x) in terms of cos x and sin x.
- 17. Using division of power series, find the first three non-zero terms of the Maclaurin series expansion of

$$f(x) = \frac{e^{2x} + 1}{\cos x}$$

18. Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$g(x) = e^{x^2} (1 + x^2 + x^3)$$

19. Determine the *interval of convergence* of the following power series. (You need not study end-point behavior.)

$$\sum_{n=1}^{\infty} \frac{n^{13} 13^n}{\sqrt{n+2016}} (x-13)^n$$

20. Analyze the behavior of the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 4}}{\left(n^{1/3} + 1789\right)^5}$$

- 21. Prove Euler's formula.
- 22. What is the relationship between $\cosh x$ and $\cos x$? between $\sinh x$ and $\sin x$?
- 23. The graph shows the area between the graphs of $f(x) = 6 \cos(\sqrt{2x})$ and $g(x) = x^2 + x$. Let (x_0, y_0) be the intersection point between the graphs of f(x) and g(x).

- (a) Compute P(x), the function containing the first three nonzero terms of the Taylor series about x = 0 of $f(x) = 6 \cos(\sqrt{2x})$.
- (b) Use P(x) to approximate the value of x_0 .
- (c) Use P(x) and the value of x_0 you computed in the previous question to write an integral that approximates the value of the shaded area. Find the
- (d) Graph f(x) and g(x) in Wolfram Alpha or your calculator. Use the graphs to find an approximate value for x_0 .

- (e) Write a definite integral in terms of f(x) and g(x) that represents the value of the shaded area. Find its value using your Wolfram Alpha or your calculator.
- **24.** (a) Find the Maclaurin series of $sin(x^2)$. Your answer should include a formula for the general term of the series.
- (b) Let m be a positive integer. Find the Maclaurin expansion of $\cos(m \pi x)$. Your answer should include a formula for the general term of the series.
- (c) Use the second degree Maclaurin polynomial of sin and cos to approximate the vale of $\,$ (The number b_m is called a Fourier coefficient of the function . These numbers play a key role in Fourier
- 25. (a) Find the Maclaurin series of $sin(x^2)$. Your answer should include a formula for the general term in the series.
- (b) Let m be a positive integer, find the Maclaurin series of $cos(m\pi x)$. Your answer should include a formula for the general term in the series.
- (c) Use the second degree Maclaurin polynomials of $sin(x^2)$ and $cos(m\pi x)$ to approximate the value of b_m , where

$$b_m = \int_{-1}^{1} \sin(x^2) \cos(m\pi x) dx.$$

(The number b_m is called a Fourier coefficient of the function $sin(\ x^2\)$. These numbers play a key role in Fourier analysis, a subject with widespread applications in engineering and the sciences.)

Jean-Baptiste Joseph Fourier (1768 – 1830)