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MATH 162                    Solutions:    Quiz 1

1. [5 pts] Express the area under one arch of the curve y = 3 cos 5x  as a Riemann (i.e. definite) integral.  No need to evaluate this integral.   Sketch!

Solution:   First note that the period of cos 5x is (1/5)(period of cos x) = 2/5.

[image: ]

So the area that we seek may be obtained by integrating from x = -2/5 to 2/5.  


[bookmark: _GoBack] 



2.   [5 pts] Using the Fundamental Theorem of Calculus, compute the derivative of the function 



Solution:   Employing the FTC, we find 






3. [5 pts] Evaluate



Solution:   

Since y = |4 – x| is piecewise linear, we can easily sketch its graph:

[image: ]

Note that the area under this curve over [3, 4] is simply the area of a triangle, ½ (1)(1) = ½ and the area under this cruve over [4, 6] is again the area of a triangle, ½ (2)(2) = 2.   Thus the area under this curve over [3, 6] is ½ + 2 = 5/2.


 4.  [5 pts] Using the method of judicious guessing or substitution, evaluate  



Solution:   Let our first guess be g1(x) = (3 + 2 sin x)3/2.
Now dg1 /dx = (3/2) (3 + 2 sin x)1/2 (0 + 2(1/3 cos x), we see how to modify g1 to obtain the correct anti-derivative:
g2(x) = (1/3) g1(x) = (1/3)(3 + 2 sin x)3/2 .   Hence



5.   [5 pts]   Find:   



Solution:   Since both the numerator and denominator tend towards 0 as x 0, we may apply l’Hopital’s rule: 



Here we have applied l’Hopital’s rule a second time since both ex – 1 and 2x tend toward 0 as x 0.


6.  [5 pts]  Suppose f(x) is a function with the following properties:

	· f(0) = 4
· f(2) = 0
	· f(x) is decreasing on [0, 2]
· f(x) is concave down on [0, 2]


Suppose that           [image: ].
a. Is g(x) increasing or decreasing on [0, 2]?  No explanation necessary.
Solution:   Using the FTC, we find dg/dt = f(t) > 0.
Thus g is increasing on [0, 2].

b. Is g(x) concave up or concave down on [0, 2]?  No explanation necessary.
Solution:   Assuming that f is differentiable on (0, 2), 
d2g/dt2(g) = d/dt (dg/dt) = d/dt (f(t)) < 0 since we are given that f is decreasing on
 [0, 2].  We conclude that g is concave down on [0, 2].

c. Sketch a graph of f(x) which satisfies the above conditions and use it to explain why
[image: ]


Solution: 

  [image: ]


Since the area beneath f(x) above [0, 2] must be strictly smaller than the area of the rectangle with height 4 and width 2, we obtain:     
Since f(x) lies above the line joining (0, 4) and (2, 0), the area beneath f(x) above 
[0, 2] must be strictly larger than the area of the right triangle with vertices (0, 0), 

(0, 4) and (2, 0).   Since the area of this triangle is ½ (2)(4) = 4,  we obtain:   
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