1. [5 pts] Express the area under one arch of the curve $\mathrm{y}=3 \cos 5 \mathrm{x}$ as a Riemann (i.e. definite) integral. No need to evaluate this integral. Sketch!

Solution: First note that the period of $\cos 5 x$ is $(1 / 5)($ period of $\cos x)=2 \pi / 5$.

So the area that we seek may be obtained by integrating from $x=-2 \pi / 5$ to $2 \pi / 5$.

$$
\text { Thus area }=\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}} 3 \cos (5 x) d x
$$

2. [5 pts] Using the Fundamental Theorem of Calculus, compute the derivative of the function

$$
F(x)=\int_{1}^{x} \frac{\ln t}{t^{2}} d t
$$

Solution: Employing the FTC, we find

$$
F^{\prime}(x)=\frac{\ln x}{x^{2}}
$$

3. [5 pts] Evaluate

$$
\int_{3}^{6}|4-x| d x
$$

Solution:

Since $y=|4-x|$ is piecewise linear, we can easily sketch its graph:

Note that the area under this curve over [3, 4] is simply the area of a triangle, $1 / 2$ $(1)(1)=1 / 2$ and the area under this cruve over $[4,6]$ is again the area of a triangle, $1 / 2(2)(2)=2$. Thus the area under this curve over $[3,6]$ is $1 / 2+2=$ 5/2.
4. [5 pts] Using the method of judicious guessing or substitution, evaluate

$$
\int(\cos x) \sqrt{3+2 \sin x} d x
$$

Solution: Let our first guess be $g_{l}(x)=(3+2 \sin x)^{3 / 2}$.
Now $d g_{1} / d x=(3 / 2)(3+2 \sin x)^{1 / 2}\left(0+2(1 / 3 \cos x)\right.$, we see how to modify g_{1} to obtain the correct anti-derivative:
$g_{2}(x)=(1 / 3) g_{1}(x)=(1 / 3)(3+2 \sin x)^{3 / 2}$. Hence

$$
\int(\cos x) \sqrt{3+2 \sin x} d x=(1 / 3)(3+2 \sin x)^{3 / 2}+C
$$

5. [5 pts] Find:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}
$$

Solution: Since both the numerator and denominator tend towards 0 as $x \rightarrow 0$, we may apply l'Hopital's rule:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}
$$

Here we have applied l'Hopital's rule a second time since both $e^{x}-1$ and $2 x$ tend toward 0 as $x \rightarrow 0$.
6. [5 pts] Suppose $f(x)$ is a function with the following properties:

- $f(0)=4$
- $f(x)$ is decreasing on $[0,2]$
- $f(2)=0$
- $f(x)$ is concave down on [0, 2]

Suppose that

$$
g(x)=\int_{0}^{x} f(t) d t .
$$

a. Is $g(x)$ increasing or decreasing on [0, 2]? No explanation necessary.

Solution: Using the FTC, we find $d g / d t=f(t)>0$.
Thus g is increasing on [0, 2].
b. Is $g(x)$ concave up or concave down on $[0,2]$? No explanation necessary.

Solution: Assuming that f is differentiable on $(0,2)$, $d^{2} g / d t^{2}(g)=d / d t(d g / d t)=d / d t(f(t))<0$ since we are given that f is decreasing on [0,2]. We conclude that g is concave down on [0,2].
c. Sketch a graph of $f(x)$ which satisfies the above conditions and use it to explain why

$$
4<\int_{0}^{2} f(x) d x<8
$$

Solution:

Since the area beneath $f(x)$ above [0, 2] must be strictly smaller than the area of the rectangle with height 4 and width 2, we obtain: $\int_{0}^{2} f(x) d x<8$.

Since $f(x)$ lies above the line joining $(0,4)$ and $(2,0)$, the area beneath $f(x)$ above [0,2] must be strictly larger than the area of the right triangle with vertices $(0,0)$, $(0,4)$ and $(2,0)$. Since the area of this triangle is $1 / 2(2)(4)=4$, we obtain: $4<\int_{0}^{2} f(x) d x$.

