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MATH 162          Solutions:  Quiz IV      

   

1. Find the exact value of the improper integral   dx
x

x



0

2/32 )13(
   . 

Solution:   

 
13

1

13

1

13

1
lim)130()13(lim

0
)13(lim)13(lim)13(

)13(

2

2/122/12

2/12

0

2/32

0

2/32

0

2/32
















































p
p

x

p
xdxxxdxxxdx

x

x

pp

p

p

p

 

2. Find the exact value of the improper integral dxe bx
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3.  Determine whether the improper integral dx
x
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  converges or diverges. Explain your 

reasoning. 

 

Solution: We begin by comparing the order of magnitude of the numerator with that of the denominator.   
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Since we know that dx
x



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 converges (due to the p-test), we conjecture that our original improper integral 

does as well.   Toward this end we invoke the Comparison Theorem. 
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Now since any non-zero multiple of a convergent integral converges, it follows from the Comparison Test that 

our original improper integral converges. 

 

4. Determine whether the improper integral    dx
x
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16
 converges or diverges. Explain 

your reasoning. 

 

Solution: We begin by comparing the order of magnitude of the numerator with that of the denominator.   
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Since we know that dx
x



16

1
 diverges (due to the p-test), we conjecture that our original improper integral 

diverges as well.   Toward this end we invoke the Comparison Theorem. 
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Now since any non-zero multiple of a divergent integral diverges, it follows from the Comparison Test that our 

original improper integral diverges.  

5. Below are graphs of the function
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(a) On the graph, label which is f(x) and which is g(x). Explain your answer in the space below. 
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Solution:  y = f(x) is a decreasing function, f must be the orange graph. 

Furthermore, since g(0) = 0, g must be the oscillating (blue) graph. 

 

 

(b) Based on the graph, determine if it is possible to tell whether the improper integral dxxg
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converges or diverges. Explain your answer. 
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it follows from the p-test and the Comparison Test that  
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Nothing was ever achieved without enthusiasm. 

 

- Emerson 

 

 


