1. [10 pts] Find a formula for the general term a_{n} of each sequence below. Assume the pattern of the first few terms continues, and that the first term in each sequence corresponds to $n=1$. For example, in part(a), $a_{1}=5$.
(a) $5,8,11,14,17, \ldots$

This sequence grows linearly: that is, the next term is 3 greater than the current term.
$a_{n}=5+3(n-1)$
(b) $-3,2,-\frac{4}{3}, \frac{8}{9},-\frac{16}{27}, \ldots$

This sequence grows geometrically: that is, the next term is $(-2 / 3)$ times the current term.

$$
a_{n}=3(-1)^{n}(2 / 3)^{n-1}
$$

2. [10 pts] Let $a_{n}=\frac{2 n}{3 n+1}$
(a) Determine whether the sequence $\left\{a_{n}\right\}$ is convergent or not. If the sequence converges, find its limit. If the sequence diverges, explain why. (Show your work.)
Solution: We conjecture that $\left\{a_{n}\right\}$ converges to 2/3. Toward this end:

$$
a_{n}=\frac{2 n}{3 n+1}=\frac{2}{3+\frac{1}{n}} \rightarrow \frac{2}{3+0}=\frac{2}{3}
$$

(b) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ is convergent or not. Justify your answer!

Solution: The series $\sum_{n=1}^{\infty} a_{n}$ diverges since the sequence of atoms does not converge to 0 . ($\mathrm{n}^{\text {th }}$ term Test for Divergence)
3. [28 pts] For each of the following, determine whether the series is convergent or divergent. If the series converges, find the sum. If the series diverges, explain why.
(a) $\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\frac{1}{12}+\frac{1}{15}+\cdots$

Solution: This series diverges since it equals 1/3 times the harmonic series:
Than is: $\frac{1}{3}+\frac{1}{6}+\frac{1}{9}+\ldots=\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$
(b) $4+3+\frac{9}{4}+\frac{27}{16}+\ldots$

Solution: Since $a_{n+1} / a_{n}=3 / 4$, we recognize this series as geometric with $R=3 / 4$.
Since $|R|<1$, this series converges to:
$\frac{4}{1-3 / 4}=16$
(c) $\sum_{n=1}^{\infty} \frac{1}{4+e^{-n}}$

Solution: This series diverges because of the $n^{\text {th }}$ term Test for Divergence.

$$
a_{n}=\frac{1}{4+e^{-n}} \rightarrow 1 / 4
$$

(d) $\sum_{n=1}^{\infty}(\sqrt{2})^{-n}$

Solution: This series converges because it is geometric with common ratio of $\frac{(\sqrt{2})^{-n-1}}{(\sqrt{2})^{-n}} \rightarrow(\sqrt{2})^{-1}=\frac{1}{\sqrt{2}}<1$

The sum of this series is $\quad \frac{\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}-1}$
4. [30 pts] Using an appropriate comparison test, determine whether each of the following series converges or diverges. Explain your reasoning clearly.
(a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$

Solution: We know from the ("partial") p-test that $\sum_{1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. Hence we will try to show that the given series diverges:

Toward this end: $\frac{1}{\sqrt{n}-1}>\frac{1}{\sqrt{n}}>0$
Finally, since $\sum_{1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, the Comparison Test allows us to conclude that the original series diverges as well.
(b) $\sum_{n=1}^{\infty}\left(1+\cos ^{2} n\right)\left(2^{-n}\right)$

Solution: Since $\sum_{1}^{\infty} 2^{-n}$ converges since it is geometric with common ratio of $1 / 2$, we conjecture that our original series converges as well. Towards this end:
$0 \leq \frac{1+\cos ^{2} n}{2^{n}} \leq \frac{1+1}{2^{n}}=\frac{1}{2^{n-1}}$
Thus, since the geometric series $\sum_{1}^{\infty} \frac{1}{2^{n-1}}$ converges, our original series must converge as well.
(c) $\sum_{n=1}^{\infty} \frac{5^{n}+3}{4^{n}+n+7^{n}}$

Solution: Let $a_{n}=\frac{5^{n}}{4^{n}+n+7^{n}}$
Note that the denominator is dominated by 7^{n}-------- not 11^{n}

Since a_{n} is roughly $5^{n} / 7^{n}=(5 / 7)^{n}$, we conjecture that the original series converges.

Now: $0 \leq a_{n}=\frac{5^{n}}{4^{n}+n+7^{n}}<\frac{5^{n}}{7^{n}}=\left(\frac{5}{7}\right)^{n}$
Since $\sum_{n=1}^{\infty}\left(\frac{5}{7}\right)^{n}$ is a convergent geometric series (with common ration of 5/7), we may invoke the comparison theorem to conclude that $\sum_{n=1}^{\infty} \frac{5^{n}}{4^{n}+n+7^{n}}$
5. The factorial, n !, of a positive integer n is defined to be $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$. For example, $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$.

Consider the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.
(a) [10 pts] Find the partial sums s_{1}, s_{2}, s_{3}, and s_{4} of this series. Write each of the four partial sums as a single fraction in lowest terms.

Solution: Using the definition of partial sum, we have:
$s_{1}=a_{1}=1 /(2!)=1 / 2$
$s_{2}=s_{1}+a_{2}=1 / 2+2 /(3!)=1 / 2+1 / 3=5 / 6$
$s_{3}=s_{2}+a_{3}=5 / 6+3 /(4!)=5 / 6+1 / 8=23 / 24$
$s_{4}=s_{3}+a_{4}=23 / 24+a_{4}=23 / 24+4 /(5!)=23 / 24+1 / 30=119 / 120$
(b) [5 pts] Use your answers to part (a) to infer a general formula for s_{n}. (You do not have to verify your answer.)

Solution: We infer from the pattern above that

$$
a_{n}=\frac{(n+1)!-1}{(n+1)!}
$$

(c) [4 pts] Use your answer in part (b) to find the sum of the series.

Solution: $\quad a_{n}=\frac{(n+1)!-1}{(n+1)!}=1-\frac{1}{(n+1)!} \rightarrow 1-0=1$

As a net is made up of a series of ties, so everything in this world is connected by a series of ties. If anyone thinks that the mesh of a net is an independent, isolated thing, he is mistaken. It is called a net because it is made up of a series of interconnected meshes, and each mesh has its place and responsibility in relation to the other meshes.

- Buddha

