MATH 162 SOLUTIONS: QUIZ VI

1. *[10 pts]* Find a formula for the general term a_n of each sequence below. Assume the pattern of the first few terms continues, and that the first term in each sequence corresponds to n = 1. For example, in part(a), $a_1 = 5$.

(a) 5, 8, 11, 14, 17, ...

This sequence grows linearly: that is, the next term is 3 greater than the current term.

 $a_n = 5 + 3(n-1)$

(b)
$$-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \dots$$

This sequence grows geometrically: that is, the next term is (-2/3) times the current term.

 $a_n = 3(-1)^n (2/3)^{n-1}$

- 2. [10 pts] Let $a_n = \frac{2n}{3n+1}$
 - (a) Determine whether the sequence {a_n} is convergent or not. If the sequence converges, find its limit. If the sequence diverges, explain why. (Show your work.)

Solution: We conjecture that $\{a_n\}$ converges to 2/3. Toward this end:

$$a_n = \frac{2n}{3n+1} = \frac{2}{3+\frac{1}{n}} \rightarrow \frac{2}{3+0} = \frac{2}{3}$$

(b) Determine whether the series $\sum_{n=1}^{\infty} a_n$ is convergent or not. *Justify* your answer!

Solution: The series $\sum_{n=1}^{\infty} a_n$ diverges since the sequence of atoms does not converge to 0. (nth term Test for Divergence)

3. [28 pts] For each of the following, determine whether the series is *convergent* or *divergent*. If the series *converges*, find the *sum*. If the series *diverges*, *explain why*.

(a)
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \frac{1}{12} + \frac{1}{15} + \cdots$$

Solution: This series diverges since it equals 1/3 times the harmonic series:

Than is:
$$\frac{1}{3} + \frac{1}{6} + \frac{1}{9} + \dots = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$$

(b) $4 + 3 + \frac{9}{4} + \frac{27}{16} + \dots$

Solution: Since $a_{n+1} / a_n = \frac{3}{4}$, we recognize this series as geometric with $R = \frac{3}{4}$. Since |R| < 1, this series converges to:

$$\frac{4}{1-3/4} = 16$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{4 + e^{-n}}$$

Solution: This series diverges because of the nth term Test for Divergence.

$$a_n = \frac{1}{4 + e^{-n}} \to 1/4$$

(d) $\sum_{n=1}^{\infty} (\sqrt{2})^{-n}$

Solution: This series converges because it is geometric with common ratio of

$$\frac{\left(\sqrt{2}\right)^{-n-1}}{\left(\sqrt{2}\right)^{-n}} \rightarrow \left(\sqrt{2}\right)^{-1} = \frac{1}{\sqrt{2}} < 1$$

The sum of this series is
$$\frac{\frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2} - 1}$$

4. [30 pts] Using an appropriate comparison test, determine whether each of the following series converges or diverges. *Explain your reasoning clearly*.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$$

Solution: We know from the ("partial")p-test that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. Hence we will try to show that the given series diverges:

Toward this end:
$$\frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n}} > 0$$

Finally, since $\sum_{1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, the Comparison Test allows us to conclude that the original series diverges as well.

(b)
$$\sum_{n=1}^{\infty} (1 + \cos^2 n) (2^{-n})$$

Solution: Since $\sum_{1}^{\infty} 2^{-n}$ converges since it is geometric with common ratio of $\frac{1}{2}$, we conjecture that our original series converges as well. Towards this end:

$$0 \le \frac{1 + \cos^2 n}{2^n} \le \frac{1 + 1}{2^n} = \frac{1}{2^{n-1}}$$

Thus, since the geometric series $\sum_{1}^{\infty} \frac{1}{2^{n-1}}$ converges, our original series must converge as well.

(c)
$$\sum_{n=1}^{\infty} \frac{5^n + 3}{4^n + n + 7^n}$$

Solution: Let
$$a_n = \frac{5^n}{4^n + n + 7^n}$$

Note that the denominator is dominated by 7^n ----- not 11^n

Since a_n is roughly $5^n / 7^n = (5/7)^n$, we conjecture that the original series converges.

Now:
$$0 \le a_n = \frac{5^n}{4^n + n + 7^n} < \frac{5^n}{7^n} = \left(\frac{5}{7}\right)^n$$

Since $\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$ is a convergent geometric series (with common ration of 5/7), we

may invoke the comparison theorem to conclude that $\sum_{n=1}^{\infty} \frac{5^n}{4^n + n + 7^n}$

5. The *factorial*, *n*!, of a positive integer *n* is defined to be $n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$. For example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.

Consider the series
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$$
.

(a) [10 pts] Find the partial sums s1, s2, s3, and s4 of this series. Write each of the four partial sums as a single fraction in lowest terms.

Solution: Using the definition of partial sum, we have:

$$s_1 = a_1 = 1/(2!) = \frac{1}{2}$$

 $s_2 = s_1 + a_2 = \frac{1}{2} + \frac{2}{(3!)} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$

$$s_3 = s_2 + a_3 = 5/6 + 3/(4!) = 5/6 + 1/8 = 23/24$$

 $s_4 = s_3 + a_4 = 23/24 + a_4 = 23/24 + 4/(5!) = 23/24 + 1/30 = 119/120$

(b) [5 *pts*] Use your answers to part (a) to infer a general formula for s_n . (You do not have to verify your answer.)

Solution: We infer from the pattern above that

$$a_n = \frac{(n+1)! - 1}{(n+1)!}$$

(c) [4 pts] Use your answer in part (b) to find the sum of the series.

Solution:
$$a_n = \frac{(n+1)!-1}{(n+1)!} = 1 - \frac{1}{(n+1)!} \to 1 - 0 = 1$$

As a net is made up of a series of ties, so everything in this world is connected by a series of ties. If anyone thinks that the mesh of a net is an independent, isolated thing, he is mistaken. It is called a net because it is made up of a series of interconnected meshes, and each mesh has its place and responsibility in relation to the other meshes.

