


Recall that the Taylor Series for a function f(x) centered at x = a is
[image: ] .
The Taylor Series centered at a = 0 is called the Maclaurin Series and it has the form
[image: ] 
The Maclaurin Series for some familiar functions are given below along with their radii of convergence.
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MATH 162– Solutions: Quiz 8 
For each of the following functions f(x) and centers x = a, find the first four non-zero terms of the Taylor series and the radius of convergence.

(a) f(x) = xe2x centered at x = 0


Solution:      converges for all x.
Replacing x by 2x in the above, we have 

   also converges for all x.

Finally, f(x) = x
The first four non-zero terms of this series are:


The series converges for all x.

[image: ]    centered at x = 0

Solution:  The geometric series     converges for all r, 0<r<1.

Replacing r by –4x we obtain



As we have replaced r by 4x, our new series will converge for |4x| < 1, that is:  |x| < ¼ 
So the radius of convergence is R = ¼ .

2. Use the definition of the Taylor series to find the first five non-zero terms of the series for f(x) = ln x centered at x = 1

Solution:   Computing the first 5 derivatives of f:
f(x) = ln x
f’(x) = 1/x
f’’(x) = -1/x2
f’’’(x) = 1/x3
f’(4)(x) = -1/x4
f’(5)(x) = 1/x5

Replacing x by 1:

f(1) = ln 1 = 0
f ’(1) = 1
f ’’(1) = -1
f ’’’(1) = 1
f’(4)(1) = -1
f’(5)(1) = 1

Thus the first five non-zero terms are:




3. Find the limit using Taylor series. Do not use l’Hˆopital’s Rule.

[image: ]



Solution:      converges for all x.
Substituting x2 for x in the above, we have 

   also converges for all x.  Hence

 


4.  Find the exact value of the series
[image: ]


Solution:  Since    replacing x by –x,





Thus   



[image: ]

Solution:  



Thusand so the correct choice is (e).  

6. The Taylor series for f(x) centered at x = 1 is given by
[image: ].
a. Find the first four non-zero terms of the Taylor series for f ’(x) centered at x = 1.

Solution:   We can write out the first several terms, or differentiate the general term.



[bookmark: _GoBack]Writing the first four non-zero terms of f ‘(x) centered about x = 1:





b. The Taylor series for f0(x) you found in part (a) is a geometric series. What is the common ratio of this geometric series?

Solution:   The ratio between successive terms is:      -2(x – 1)
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. Suppose that Zanm" is a Maclaurin series for f(z) and that the radius of convergence is

n=0
infinite. Circle the letter which gives the value of f’(1). No explanation necessary.

a) 0
ay
o0

c Zan
n=0
o0

d Znan
n=1
o0

e Zna: !
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