Recall that the Taylor Series for a function $f(x)$ centered at $x=a$ is

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots
$$

The Taylor Series centered at $a=0$ is called the Maclaurin Series and it has the form

$$
f(0)+f^{\prime}(a) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

The Maclaurin Series for some familiar functions are given below along with their radii of convergence.

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+ & R=\infty \\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots & R=\infty \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots & R=\infty \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots & R=1
\end{aligned}
$$

MATH 162-SOLUTIONS: QUIZ 8

For each of the following functions $f(x)$ and centers $x=a$, find the first four non-zero terms of the Taylor series and the radius of convergence.
(a) $f(x)=x e^{2 x}$ centered at $x=0$

Solution: $\quad e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$ converges for all x .
Replacing x by $2 x$ in the above, we have
$e^{2 x}=1+\frac{2 x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}+\frac{2^{4} x^{4}}{4!}+\ldots$ also converges for all x .
Finally, $\mathrm{f}(\mathrm{x})=\mathrm{x} e^{2 x}=x+\frac{2 x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}+\ldots$
The first four non-zero terms of this series are:
$p_{4}(x)=x+\frac{2 x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x^{3}}{3!}$
The series converges for all x.
(b) $f(x)=\frac{1}{1+4 x} \quad$ centered at $x=0$

Solution: The geometric series $\frac{1}{1-r}=1+r+r^{2}+r^{3}+r^{4}+\ldots$ converges for all $r, 0<r<1$.

Replacing r by -4 x we obtain
$\frac{1}{1+4 x}=1+4 x+4^{2} x^{2}+4^{3} x^{3}+4^{4} x^{4}+\ldots$

As we have replaced r by 4 x , our new series will converge for $|4 \mathrm{x}|<1$, that is: $|\mathrm{x}|<1 / 4$ So the radius of convergence is $\mathrm{R}=1 / 4$.
2. Use the definition of the Taylor series to find the first five non-zero terms of the series for $f(x)=\ln x$ centered at $x=1$

Solution: Computing the first 5 derivatives of f :

$$
\begin{aligned}
& f(x)=\ln x \\
& f^{\prime}(x)=1 / x \\
& f^{\prime \prime}(x)=-1 / x^{2} \\
& f^{\prime \prime \prime}(x)=1 / x^{3} \\
& f^{\prime}(4)(x)=-1 / x^{4} \\
& f^{\prime}(5)(x)=1 / x^{5}
\end{aligned}
$$

Replacing x by 1 :
$f(1)=\ln 1=0$
$f^{\prime}(1)=1$
$f^{\prime \prime}(1)=-1$
$\mathrm{f}^{\prime \prime \prime}(1)=1$
$f^{(4)}(1)=-1$
$f^{(5)}(1)=1$

Thus the first five non-zero terms are:

$$
p_{5}(x)=\frac{1}{1!}(x-1)-\frac{1}{2!}(x-1)^{2}+\frac{1}{3!}(x-1)^{3}-\frac{1}{4!}(x-1)^{4}+\frac{1}{5!}(x-1)^{5}
$$

3. Find the limit using Taylor series. Do not use l'H^opital's Rule.

$$
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1-x^{2}}{x^{4}}
$$

Solution: $\quad e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \quad$ converges for all x .
Substituting x^{2} for x in the above, we have
$e^{x^{2}}=1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\frac{x^{8}}{4!}+\ldots$ also converges for all x . Hence
$\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\left(1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\ldots\right)-1-x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\left(\frac{x^{4}}{2!}\right)}{x^{4}}=\frac{1}{2}$
4. Find the exact value of the series

$$
1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\frac{(\ln 2)^{4}}{4!}-\frac{(\ln 2)^{5}}{5!}+\cdots
$$

Solution: Since $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$ replacing x by $-x$,

$$
e^{-x}=1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\ldots
$$

Thus $1-\frac{\ln 2}{1!}+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\frac{(\ln 2)^{4}}{4!}-\ldots=e^{-\ln 2}=\left(e^{\ln 2}\right)^{-1}=1 / 2$
5. Suppose that $\sum_{n=0}^{\sim} a_{n} x^{n}$ is a Maclaurin series for $f(x)$ and that the radius of convergence is infinite. Circle the letter which gives the value of $f^{\prime}(1)$. No explanation necessary.
(a) 0
(b) a_{1}
(c) $\sum_{n=0}^{\infty} a_{n}$
(d) $\sum_{n=1}^{\infty} n a_{n}$
(e) $\sum_{n=1}^{\infty} n a_{n}^{n-1}$

Solution:

$$
f^{\prime}(x)=\frac{d}{d x} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{d}{d x} a_{n} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Thus $f^{\prime}(1)=\sum_{n=1}^{\infty} n a_{n}$ and so the correct choice is (e).
6. The Taylor series for $f(x)$ centered at $x=1$ is given by

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}
$$

a. Find the first four non-zero terms of the Taylor series for $f^{\prime}(x)$ centered at $x=1$.

Solution: We can write out the first several terms, or differentiate the general term.

$$
\begin{aligned}
& \frac{d}{d x} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}=\sum_{n=0}^{\infty} \frac{d}{d x}(-1)^{n+1} \frac{2^{n}}{n}(x-1)^{n}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{2^{n}}{n} \frac{d}{d x}(x-1)^{n}= \\
& \sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{n}}{n} n(x-1)^{n-1}=\sum_{n=1}^{\infty}(-1)^{n+1} 2^{n}(x-1)^{n-1}
\end{aligned}
$$

Writing the first four non-zero terms of $\mathrm{f}^{\prime}(\mathrm{x})$ centered about $\mathrm{x}=1$:

$$
p_{4}(x)=\sum_{n=1}^{4}(-1)^{n+1} 2^{n}(x-1)^{n-1}=2-2^{2}(x-1)+2^{3}(x-1)^{2}-2^{4}(x-1)^{3}
$$

b. The Taylor series for $f^{0}(x)$ you found in part (a) is a geometric series. What is the common ratio of this geometric series?

Solution: The ratio between successive terms is: $\quad-2(x-1)$

