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Recall that the Taylor Series for a function f(x) centered at x = a is 

 . 

The Taylor Series centered at a = 0 is called the Maclaurin Series and it has the form 

  

The Maclaurin Series for some familiar functions are given below along with their radii of 

convergence. 

  R = ∞ 

  R = ∞ 

  R = ∞ 

  R = 1 
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MATH 162– Solutions: Quiz 8  

For each of the following functions f(x) and centers x = a, find the first four non-zero terms 

of the Taylor series and the radius of convergence. 

 

(a) f(x) = xe2x centered at x = 0 

 

Solution:    ...
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Replacing x by 2x in the above, we have  
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The first four non-zero terms of this series are: 
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The series converges for all x. 

 

    centered at x = 0 

Solution:  The geometric series   ...1
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  converges for all r, 0<r<1. 

 

Replacing r by –4x we obtain 
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As we have replaced r by 4x, our new series will converge for |4x| < 1, that is:  |x| < ¼  

So the radius of convergence is R = ¼ . 
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2. Use the definition of the Taylor series to find the first five non-zero terms of the series 

for f(x) = ln x centered at x = 1 

 

Solution:   Computing the first 5 derivatives of f: 

f(x) = ln x 

f’(x) = 1/x 

f’’(x) = -1/x2 

f’’’(x) = 1/x3 

f’(4)(x) = -1/x4 

f’(5)(x) = 1/x5 

 

Replacing x by 1: 

 

f(1) = ln 1 = 0 

f ’(1) = 1 

f ’’(1) = -1 

f ’’’(1) = 1 

f’(4)(1) = -1 

f’(5)(1) = 1 

 

Thus the first five non-zero terms are: 
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3. Find the limit using Taylor series. Do not use l’Hˆopital’s Rule. 
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Solution:    ...
!4!3!2!1
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Substituting x2 for x in the above, we have  
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4.  Find the exact value of the series 

 
 

Solution:  Since  ...
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Solution:   
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6. The Taylor series for f(x) centered at x = 1 is given by 

. 

a. Find the first four non-zero terms of the Taylor series for f ’(x) centered at x = 1. 

 

Solution:   We can write out the first several terms, or differentiate the general term. 
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Writing the first four non-zero terms of f ‘(x) centered about x = 1: 
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b. The Taylor series for f0(x) you found in part (a) is a geometric series. What is the 

common ratio of this geometric series? 

 

Solution:   The ratio between successive terms is:      -2(x – 1) 


