## WORKSHEET I

## REVIEW

1. Find the area of the region bounded by the x -axis and the curve

$$
y=x(x-1)(x-3)
$$

Sketch!
2. Find the area under one arch of the curve $\mathrm{y}=\sin 4 \mathrm{x} \quad$ Sketch!
3. Find the area bounded between the curves $y=x^{2} / 2$ and $y=x+4$.
4. Evaluate by first interpreting as area:

$$
\int_{0}^{3} \sqrt{9-x^{2}} d x
$$

5. Evaluate

$$
\int_{-1}^{1} x^{3} \sqrt{5+x^{2}} d x
$$

(Hint: Think about the area interpretation of this integral.)
6. Evaluate

$$
\int_{-1}^{1}|3 x+1| d x
$$

Sketch!
7. Show that

$$
450>\int_{1}^{3} x^{3} \sqrt{1+x^{6}} d x>300
$$

8. Using the Fundamental Theorem of Calculus, compute the derivative of the function

$$
F(x)=\int_{1}^{x} \sin \left(t^{2}\right) d t
$$

9. Suppose that Charlotte, the spider, travels along the $x$-axis from time $\mathrm{t}=0$ until $\mathrm{t}=3 \mathrm{hrs}$ and that her velocity function is given by:

$$
\mathrm{v}(\mathrm{t})=\mathrm{t}\left(1+\mathrm{t}^{2}\right)^{1 / 2} \mathrm{mph} .
$$

How far does Charlotte travel during these three hours?

10. Using the method of judicious guessing or substitution, evaluate each of the following indefinite integrals:
(a) $\int \tan (4 x) \sec ^{2}(4 x) d x$
(b) $\int \frac{e^{x}}{1+e^{2 x}} d x$
(c) $\int \frac{x^{2}-5}{x+2} d x$
(d) $\int \frac{\sqrt{\ln x}}{x} d x$
11. Find the maximum value of the function $\mathrm{G}(\mathrm{x})=-\mathrm{x}^{4} \ln \mathrm{x}$.
12. Sketch the curve below, finding all zeroes, singularities, horizontal and vertical asymptotes.

$$
y=\frac{(x-1)^{2}(2 x-3)^{3}}{(x+1)(x-2)^{4}}
$$

13. Sketch the following curve, finding all local extrema and points of inflection. Where is the function concave up? concave down?

Find global extrema if they exist.

$$
y=x^{3} e^{-2 x}
$$

14. Compute the following limit:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{\cos x-1}
$$

15. Find the point on the line $x / a+y / b=1$ that is closest to the origin.
16. Find the values of $p$ and $q$ for which the function

$$
F(x)=x^{3}+p x^{2}+q x
$$

(a) has a local max at $\mathrm{x}=-1$ and a local min at $\mathrm{x}=3$.
(b) has a local min at $\mathrm{x}=4$ and a point of inflection at $\mathrm{x}=1$.
17. Express the following as a Riemann integral and evaluate:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{100}
$$

18. Give the definitions of the hyperbolic functions $\sinh x, \cosh x$, $\tanh \mathrm{x}$ and $\operatorname{sech} \mathrm{x}$. Prove that $(\cosh \mathrm{x})^{2}-(\sinh \mathrm{x})^{2}=1$ and $1-(\tanh \mathrm{x})^{2}=(\operatorname{sech} \mathrm{x})^{2}$.
19. Find the area of the region bounded by the curves $y=x^{2016}$ and $y=x^{2015}$. Sketch!
20. Find $\lim _{x \rightarrow \infty} \frac{3(2 x-5)^{4}\left(x^{2}-4 x+2015\right)^{2}(3 x+5)}{(x+11)^{5}(x+99)^{2}(5 x+1)^{2}}$

Twice and thrice over, as they say, good is it to repeat and review what is good.

- Plato


