WORKSHEET XVI

OPERATIONS ON POWER SERIES

- 1. (a) Consider the power series $f(x) = 1/(1-x) = 1 + x + x^2 + x^3 + ...$ What is its interval of convergence?
 - (b) Find the series for f'(x) and f''(x).
- 2. Using the power series obtained in 1(b) for f'(x), determine the sum of the series $\sum_{n=1}^{\infty} \frac{n}{3^n}$
- 3. The series

$$\sin x = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - x^{11}/11! + \dots$$

converges to sin x for all real x.

- (a) Find the first six terms of a series for cos x. For which values should the series converge?
- (b) By replacing x by 2x in the series for $\sin x$, find a series that converges to $\sin 2x$ for all x.
- (c) Using series multiplication, find a series that converges to $2 \sin x \cos x$.
- 4. (a) On which interval does the series $1/(1+t) = 1 t + t^2 t^3 + t^4 t^5 + \dots$ converge?
- (b) Integrating both sides over the interval [0, x], find the first six terms of a series that converges to ln(1 + x).
- 5. Find a power series representation of $1/(1 + x^2)$.
- 6. Find a power series representation of $1/(2 + x^2)$.
- 7. Find a power series representation of $x^4/(2 + x^2)$.
- 8. Find a power series representation of $1/(1-x)^2$. Differentiate a well-known geometric sum.
- 9. The series $e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + \dots$ converges to e^x for all real x.
 - (a) Find a series for $(d/dx) e^x$.

- (b) Find a series for $\int e^x dx$
- (c) In the series for e^x , replace x by -x to find a series expansion of e^{-x} .
- (d) In (c), replace x by x^2 to find a series expansion of e^{-x^2} .
- 10. (a) Beginning with the series for $1/(1 + x^2)$, find a series expansion of arctan x.
 - (b) Find a series expansion for $\int \frac{\arctan x}{x} dx$.
- 11. Using a series representation for $\sin 3x$, find values of r and s for which

$$\lim_{x \to 0} \left(\frac{\sin 3x}{x^3} + \frac{r}{x^2} + s \right) = 0$$

12. [Stewart] Using the power series for arctan x, prove that the following series converges to π :

$$\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

I used to love mathematics for its own sake, and I still do, because it allows for no hypocrisy and no vagueness....

- Stendhal, The Life of Henri Brulard