WORKSHEET XVII

TAYLOR POLYNOMIALS, TAYLOR SERIES

Wikipedia: As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows $\sin (x)$ and its Taylor approximations, polynomials of degree 1, 3, 5, 7, 9, 11 and 13.

1. Find the $5^{\text {th }}$ order Maclaurin polynomial of $\mathrm{e}^{3 \mathrm{x}}$.
2. Find the $4^{\text {th }}$ order Maclaurin polynomial of $(1-x) e^{x}$.
3. Find the $3^{\text {rd }}$ order Taylor polynomial of $1 /\left(1+x^{2}\right)$ centered at $\mathrm{c}=1$.
4. Find the $5^{\text {th }}$ order Maclaurin polynomial of $(3 \mathrm{x}-\sin (3 \mathrm{x})) / \mathrm{x}^{3}$.
5. Find the first four non-zero terms of the Maclaurin series of $\exp \left(\mathrm{x}^{2}+\mathrm{x}\right)$.
6. Write the Maclaurin series expansion for $\mathrm{x} /\left(1+\mathrm{x}^{2}\right)$ and for
$\ln \left(1+x^{2}\right)$. Find the interval of convergence for each series. What is the relationship between these two series?
7. Using an appropriate power series expansion, compute $\Sigma \mathrm{n} / 7^{\mathrm{n}}$. (Hint: Differentiate an appropriate geometric series.)
8. Find the Maclaurin series of each of the functions: $2 /(3-x), 5 /(4-x)$, and $(23-7 x) /[(3-x)(4-x)]$.
9. Find the $99^{\text {th }}$ derivative of $1 /(a-b x)$ by using an appropriate power series.
10. Find the binomial expansion of $(1+x)^{-4}$. What is its radius of convergence?
11. Find the Maclaurin series expansion of $1 /\left(1+x^{2}\right)^{1 / 2}$.
12. Find the $23^{\text {rd }}$ derivative of $1 /\left(1+x^{2}\right)^{1 / 2}$.
13. Using an appropriate Maclaurin series, evaluate the limit of $(\sin \mathrm{x}-\mathrm{x}) / \mathrm{x}^{3}$ as $\mathrm{x} \rightarrow 0$.
14. Evaluate the limit of $(\sin x-\tan x) / x^{3}$ as $x \rightarrow 0$ without using l'Hôpital's rule.
15. Evaluate the limit of $(\ln x) /(x-1)$ as $x \rightarrow 1$ without using l'Hôpital's rule.
16. Evaluate the limit of $1 /(\sin x)-1 / x$ as $x \rightarrow 0$ without using l'Hôpital's rule.
17. Evaluate the limit of $(\sin x-x) /(\tan x-x)$ as $x \rightarrow 0$ without using l'Hôpital's rule.
18. Evaluate the limit of $\ln x /\left(e^{x}-e\right)$ as $x \rightarrow 1$ without using l'Hôpital's rule. (Hint: Let $t=x-1$.)
19. Find $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{\cosh (3 x)-1}$ without using l'Hôpital's rule.
20. State Taylor's inequality. Using this inequality, prove that the Maclaurin series of $\mathrm{e}^{\mathrm{x}}, \sin \mathrm{x}, \cos \mathrm{x}$, and $\cosh \mathrm{x}$ each converge to the given function everywhere.

Colin Maclaurin (1698-1746)

Brook Taylor (1685-1731)

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

