WORKSHEET II

VOLUME \& CAVALIERI'S PRINCIPLE

$$
\text { volume of each solid }=\int_{0}^{h} A(y) d y
$$

1. The base of a solid is the 2-dimensional region bounded by the curve $y=(\sin x)^{1 / 2}$ and the interval $[0, \pi]$ on the x-axis. The cross sections perpendicular to the x -axis are equilateral triangles with bases running from the x-axis to the curve. Find the volume of this solid.
2. The cross sections of a solid are squares perpendicular to the x-axis with their centers on the axis. If the square cut off at x has edge length of $2 x^{2}$, find the volume of the solid between $x=0$ and $x=a$.
3. Find the volume of a right circular cone of height h and base radius r. (Hint: Revolve an appropriate triangle about the x or y -axis.)

4. Consider the triangle T with vertices $(0,0),(2,0)$, and $(1,1)$. Find the volume of the solid of revolution obtained by rotating T about:
(a) the x -axis
(b) the y-axis
(c) the vertical line $\mathrm{x}=3$
(d) the horizontal line $y=-1$
(e) The horizontal line $\mathrm{y}=2$
5. Consider the portion of the ball of radius R centered at the origin for $y \geq R-h$ where $0<h<R$. Find the volume of this spherical cap.

6. Consider the region R bounded by the curves $y=x^{2}$ and $y=2-x$.

Find the volume of the solid obtained by rotating R about axis $x=-3$.
7. Let C be the region bounded by the lines $\mathrm{y}=\mathrm{x}, \mathrm{y}=2 \mathrm{x}$ and $\mathrm{y}=2$. Find the volume of the solid obtained by rotating C about the x-axis.
8. Consider the region A bounded by the curve $\mathrm{y}=\mathrm{x}^{2}-\mathrm{x}^{3}$ and the x -axis.

Find the volume obtained by rotating about:
(a) the y-axis
(b) the vertical line $x=1$
(c) the vertical line $\mathrm{x}=3$
(d) the vertical line $x=-3$
9. The region in the $x y$-plane defined by the inequalities $0 \leq x \leq 2$ and $x^{2} / 4 \leq y \leq 1$ is rotated about the given axis below. Find the volume of the solid of revolution so generated.
(a) the x -axis;
(b) the y-axis;
(c) the vertical line $\mathrm{x}=2$;
(d) the horizontal line $y=1$
10. Find the volume of the torus obtained by revolving the disk $x^{2}+y^{2} \leq$ a^{2} about the line $\mathrm{x}=\mathrm{b}$, where $\mathrm{b}>\mathrm{a}$.

Bonaventura Francesco Cavalieri (1598-1647)

