WORKSHEET XXI

PARTIAL FRACTION DECOMPOSITION

1. Find the partial fraction decomposition of each of the following rational functions. (To check your answers in Mathematica, use the Apart command.)
(a) $\frac{x+3}{(x+1)(x+2)}$
(b) $\frac{x^{4}+1}{x(x-2)}$
(c) $\frac{1}{(x+5)(x-2)(x-3)}$
(d) $\frac{x^{2}+1}{(x+4)^{2}(x-2)}$
(e) $\frac{x+3}{(x+5)(x-2)(x-3)}$
2. Find the form of the partial fraction decomposition of each of the following. You need not solve for the constants.
(a) $\frac{x+8}{(x+5)^{3}(x-2)^{2}(x-3)}$
(b) $\frac{3 x}{\left(x^{2}+5\right)\left(x^{2}-7 x+10\right)}$
(c) $\frac{x^{5}+x+1}{\left(x^{2}+x+5\right)^{2}(x+2016)}$
(d) $\frac{x^{11}+4 x^{4}+1}{\left(x^{2}+1\right)^{3}(x-1)(x+2)^{4}}$
3. Compute the indefinite integral of each of the following functions. (Warning: first convert to a rational function!)
(a) $\frac{1}{e^{2 x}-2 e^{x}-35}$
(b) $\frac{\sin x}{\cos ^{2} x+\cos x-20}$
(c) $\frac{1}{x(\ln x)\left(1+(\ln x)^{2}\right)}$

We live but a fraction of our lives.

- Henry David Thoreau

This is a tricky domain because, unlike simple arithmetic, to solve a calculus problem - and in particular to perform integration - you have to be smart about which integration technique should be used: integration by partial fractions, integration by parts, and so on.

- Marvin Minsky

