WORKSHEET XXIII

POLAR COORDINATES

1. (a) Convert from polar coordinates to Cartesian coordinates: $(3,0),(1, \pi / 4),\left(-2^{1 / 2}, \pi / 6\right),(4,3 \pi / 2),(7,5 \pi / 3)$
(b) Convert from Cartesian coordinates to polar coordinates: $(5,5),(-3,0),\left(1,-3^{1 / 2}\right),(-7,-11)$
(c) Which polar coordinate pairs label the same point? (3, $0),(-3,0),(2,2 \pi / 3),(2,7 \pi / 3),(-3, \pi),(2, \pi / 3),(-3,2 \pi),(-2,-$ $\pi / 3$)
2. Write each of the following polar equations as a Cartesian equation:
(a) $\mathrm{r} \cos \theta=2$
(b) $\mathrm{r} \sin \theta=0$
(c) $\mathrm{r} \cos \theta=0$
(d) $\mathrm{r}(\cos \theta+\sin \theta)=1$
(e) $r^{2}=4 r \sin \theta$
(f) $\mathrm{r}^{2} \sin 2 \theta=2$
(g) $r=\frac{5}{\sin \theta-2 \cos \theta}$
(h) $\mathrm{r}=11$
3. Convert each Cartesian equation below to a polar equation.
(a) $x=7$
(b) $x^{2}+y^{2}=4$
(c) $x^{2}-y^{2}=1$
(d) $x y=2$
(e) $x^{2}+x y+y^{2}=1$
(f) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
4. In sketching a polar curve how would one check for symmetry (a) about the origin? (b) about the x-axis? (c) about the y-axis?
5. Sketch the following polar curves:
(a) $r=3$
(b) $\theta=\pi / 3,-1 \leq \mathrm{r} \leq 3$
(c) $\mathrm{r}=-1,0 \leq \theta \leq \pi$
(d) $r=\theta$ (spiral of Archimedes)
(e) $\mathrm{r}=1-\cos \theta$ (cardioid)
(f) $\mathrm{r}=6 \sin \theta$
(g) $\mathrm{r} \theta=1$ (hyperbolic spiral)
(h) $\mathrm{r}=1+2 \sin \theta \quad$ (looped limaçon)
(i) $\quad \mathrm{r}=3+2 \sin \theta$ (dimpled limaçon)
(j) $\mathrm{r}=\cos 2 \theta \quad$ (rose)
(k) $\mathrm{r}=\cos 3 \theta \quad$ (rose)
(l) $r=\cos 4 \theta \quad$ (rose)
(m) $\quad \mathrm{r}=\mathrm{e}^{\theta} \quad$ (logarithmic spiral)
(n) $\quad \mathrm{r}^{2}=\theta$ (Fermat's spiral)
(o) $\mathrm{r}^{2}=\cos 2 \theta \quad$ (lemniscate of Bernoulli)
6. Derive a formula for the area of the fan-shaped region between the origin and the curve $r=f(\theta), \alpha \leq \theta \leq \beta$.

Find the area of the region:
(a) bounded by the spiral $r=\theta$ for $0 \leq \theta \leq \pi$
(b) enclosed by the cardioid $r=2(1+\cos \theta)$
(c) inside the circle $\mathrm{r}=1$ and outside the cardioid $\mathrm{r}=1-\cos$ θ
(d) enclosed by the smaller loop of the limaçon $r=2 \cos \theta$ $+1$
(e) enclosed by one leaf of the four-leaved rose $r=\cos 2 \theta$
7. Derive a formula for the arc length of a curve $r=f(\theta)$, $\alpha \leq \theta \leq \beta$. Find the arc length of the
(a) circle $r=b$
(b) circle $\mathrm{r}=\mathrm{a} \cos \theta,-\pi / 2 \leq \theta \leq \pi / 2$
(c) spiral $r=\theta^{2}, 0 \leq \theta \leq \sqrt{ } 5$
(d) cardioid $\mathrm{r}=1-\cos \theta$

Mathematica polar plot of $\mathrm{r}=\mathrm{e}^{\cos \theta}-2 \cos (4 \theta)+\sin ^{5}(\theta / 12)$ for $0 \leq \theta \leq$ 20π

