MATHEMATICA LAB II

SEQUENCES

(Lab report due: 4 April 2018)

(A) Graphing sequences

1. Using the ListPlot command in Mathematica, plot the ordered pairs (n, a_{n}) for the first 100 terms of each of the seven sequences below. Based upon this evidence, can you guess whether the sequence converges or diverges? In the former case, try to estimate the limit of the sequence. Then find the exact value of the limit using the Limit command.
(a) $a_{n}=\frac{\ln n}{\sqrt{n}}$
(b) $\quad b_{n}=\frac{n^{10}}{2^{n}}$
(c) $\quad c_{n}=\frac{10^{n}}{n!}$
(d) $\quad d_{n}=\frac{(3 n+1)^{3}(2 n-4)^{5}}{(2 n+3)^{4}(n+11)^{4}} \quad$ Note: Here you will need to examine at least a few thousand terms.
(e) $e_{n}=n^{\frac{1}{n}}$
(f) $f_{n}=\ln \left(3 n^{3}-n^{2}+5\right)-\ln \left(n^{3}+5 n+89\right)$
(g) $g_{n}=\sqrt{n^{4}+4 n^{2}+5 n+13}-\sqrt{n^{4}-n^{2}+9 n+5}$
2. (a) It is a well-known and important fact that the sequence $\left\{\left(1+\frac{r}{n}\right)^{n}\right\}$ converges to e^{r}. By letting $\mathrm{r}=1$, $\ln 2$, and $\ln 3$, support this result using Mathematica.
(b) Investigate the behavior of the two related sequences $\left\{\left(1+\frac{1}{n^{2}}\right)^{n}\right\}$ and $\left\{\left(1+\frac{1}{\sqrt{n}}\right)^{n}\right\}$. Discuss how the sequences differ in their behavior as n grows large. What do you think accounts for these differences?
3. Investigate the behavior of the sequence $\left\{(n!)^{\frac{1}{n}}\right\}$. Using Stirling's formula, find a simpler expression that approximates this sequence.

(B) Recursively defined sequences

Using RecurrenceTable, ListPlot and the Nest command, analyze each of the following sequences and find the limit if it exists.
4. $\mathrm{c}_{1}=2$, and $\mathrm{c}_{\mathrm{n}}=\left(\mathrm{c}_{\mathrm{n}-1}+3 / \mathrm{c}_{\mathrm{n}-1}\right) / 2$ for $\mathrm{n} \geq 2$.
5. $\mathrm{c}_{1}=2$, and $\mathrm{c}_{\mathrm{n}}=\left(\mathrm{c}_{\mathrm{n}-1}+5 / \mathrm{c}_{\mathrm{n}-1}\right) / 2$ for $\mathrm{n} \geq 2$.
6. $x_{1}=1$ and $x_{n}=x_{n-1}+\cos \left(x_{n-1}\right)$ for $n \geq 2$. Can you find the exact value of this limit without employing Mathematica?
7. $y_{1}=5$ and $y_{n}=4 /\left(3+2 y_{n-1}\right)$ for $n \geq 2$.
8. $\mathrm{z}_{1}=4$ and $\mathrm{z}_{\mathrm{n}}=\cos \left(\mathrm{z}_{\mathrm{n}-1}\right)$ for $\mathrm{n} \geq 2$.
9. $\mathrm{q}_{1}=3, \mathrm{q}_{\mathrm{n}}=2+1 / \sin \left(\mathrm{q}_{\mathrm{n}-1}\right)$ for $\mathrm{n} \geq 2$.

