MATHEMATICA LAB III

TAYLOR SERIES
(Due: 18 April 2018)
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I Power Series

1. Find the 8" order Maclaurin polynomial of tanh(x).

2. Find the 7" order Taylor polynomial of e* about x = 1.

3. Find the 9" order Maclaurin polynomial of In(1+x).

4. Plot the graph of y = €* along with the first four Maclaurin polynomials of €* on the same
set of axes.

5. Find the 14" order Maclaurin polynomial of exp(x?). Can you see how this polynomial is
related to the 7™ order Maclaurin polynomial of e*? Explain.

II Weierstrass’ example
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Here we examine a function defined by an infinite series (that is not a power series) which is

continuous but nowhere differentiable.

f(x) = i %sin(B” )



6. Plot the n™ partial sum of f(x) for several values of n (for example, n =3, 5, 8). Why

might you believe that f(x) is not differentiable?

11 Infinite products

In mathematics, infinite products play an important role, although perhaps not quite as prominent a
role as that of infinite series. Analogous to infinite series, an infinite product is the limit of a
sequence of partial products. The capital Greek letter, Pi, is used to indicate a product. For
example,

TTak)

denotes the product: a(1)a(2)a(3)...a(n). If we wish to define an infinite product, we could
let p(n) =a(l)a(2)a(3)...a(n) and define the infinite product to equal the limit of p(n) as n
increases without bound, if the limit exists. Of course, if the limit does not exist, we say that

the infinite product diverges.

7. Examine the infinite products defined by a(n) =1 + 1/n and b(n) =1 + 1/n?. Graph each
sequence of partial products. Does either infinite product converge? If so, what is its

limit?
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