MATHEMATICA LAB III

TAYLOR SERIES

(Due: 18 April 2018)

Frank and Ernest

Copyright (c) 1994 by Thaves. Distributed from www.thecomics.com.

I Power Series

- 1. Find the 8^{th} order Maclaurin polynomial of tanh(x).
- 2. Find the 7th order Taylor polynomial of e^x about x = 1.
- 3. Find the 9^{th} order Maclaurin polynomial of $\ln(1+x)$.
- 4. Plot the graph of $y = e^x$ along with the first four Maclaurin polynomials of e^x on the same set of axes.
- 5. Find the 14th order Maclaurin polynomial of exp(x²). Can you see how this polynomial is related to the 7th order Maclaurin polynomial of e^x ? Explain.

II Weierstrass' example

Deierstraf

Here we examine a function defined by an infinite series (that is *not* a power series) which is continuous but nowhere differentiable.

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \sin\left(3^n x\right)$$

6. Plot the n^{th} partial sum of f(x) for *several values* of *n* (for example, n = 3, 5, 8). Why might you believe that f(x) is not differentiable?

III Infinite products

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot \dots = \prod_{n=1}^{\infty} \left(\frac{4n^2}{4n^2 - 1} \right).$$

Formula of John Wallis (1616 – 1703

In mathematics, **infinite products** play an important role, although perhaps not quite as prominent a role as that of infinite series. Analogous to infinite series, an infinite product is the limit of a sequence of *partial products*. The capital Greek letter, Pi, is used to indicate a product. For example,

$$\prod_{k=1}^n a(k)$$

denotes the product: a(1)a(2)a(3)...a(n). If we wish to define an *infinite product*, we could let p(n) = a(1)a(2)a(3)...a(n) and define the infinite product to equal the limit of p(n) as *n* increases without bound, if the limit exists. Of course, if the limit does not exist, we say that the infinite product *diverges*.

7. Examine the infinite products defined by a(n) = 1 + 1/n and $b(n) = 1 + 1/n^2$. Graph each sequence of partial products. Does either infinite product converge? If so, what is its limit?

 COURSE HOME PAGE
 DEPARTMENT HOME PAGE
 LOYOLA HOME PAGE