1. Consider the following function whose graph is shown.

(a) Let X be a random variable with probability density function represented by this graph. Explain why in fact this is the graph of a probability density function.

Solution: Area under $y=f(x)$ is $1 / 2(10)(0.2)=1$. Also $f(x)$ is non-negative and defined on the real line.
(b) Find the probability that $X<3$. (Express your answer to the nearest hundredth.)

Solution: $P(X<2)=\int_{-\infty}^{3} f(x) d x=\int_{0}^{3} f(x) d x=1 / 2(3)(0.1)=0.15$
(c) Find the probability that $3<X<8$. (Express your answer to the nearest hundredth.)

Solution:

$P(3<X<8)=\int_{3}^{8} f(x) d x=$ area beneath the curve $y=f(x)$ over $[3,8]=5(0.1)+\frac{1}{2}(5)(0.1)=0.75$
2. For each of the following improper integrals of the second kind, determine convergence or divergence. In the case of convergence, compute the exact value of the integral. Simplify when possible.
(A) $\int_{0+}^{1} \frac{11+x^{2}}{x^{3}} d x$

Solution:
Using the Comparison Test:

$$
\begin{aligned}
& \text { We see that } \begin{aligned}
\frac{11+x^{2}}{x^{3}} \geq & \frac{x^{2}}{x^{3}}= \\
& \frac{1}{x}>0 \\
& \text { Since } \int_{0+}^{1} \frac{1}{x} d x \text { diverges by the } p-\text { test }
\end{aligned} \\
& \text { it follows that } \int_{0+}^{1} \frac{11+x^{2}}{x^{3}} d x \text { diverges as well. }
\end{aligned}
$$

(B) $\int_{0}^{1-} \frac{1}{\sqrt{1-x^{2}}} d x$

Solution: $\int_{0+}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\lim _{p \rightarrow 0+} \int_{p}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\left.\lim _{p \rightarrow 0+} \arcsin x\right|_{p} ^{1}=$

$$
\lim _{p \rightarrow 0+}(\arcsin 1-\arcsin p)=\frac{\pi}{2}-0=\frac{\pi}{2}
$$

Hence the given improper integral converges.
(C) $\int_{0}^{\frac{\pi}{2}-} \tan x d x$

Solution: This integral diverges because:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}-} \tan x d x=\lim _{c \rightarrow \frac{\pi}{2}-} \int_{0}^{c} \tan x d x=\left.\lim _{c \rightarrow \frac{\pi}{2}-} \frac{1}{2}(-\ln |\cos x|)\right|_{0} ^{c}= \\
& -\frac{1}{2} \lim _{c \rightarrow \frac{\pi}{2}-}(\ln |\cos c|-\ln (\cos 0))=-\frac{1}{2} \lim _{c \rightarrow \frac{\pi_{-}}{2}}(\ln |\cos c|) \rightarrow \infty
\end{aligned}
$$

since $\cos (c) \rightarrow 0+$ as $c \rightarrow(\pi / 2)$-.
(D) $\int_{0+}^{1} \ln \left(\frac{1}{x}\right) d x$

Solution: First note that an anti - derivative of $\ln x$ is $x \ln x-x$. Hence

$$
\begin{aligned}
& \left.\int_{0+}^{1} \ln \left(\frac{1}{x}\right) d x=-\lim _{p \rightarrow 0+} \int_{p}^{1} \ln x d x=-\left.\lim _{p \rightarrow 0+}(x \ln x-x)\right|_{p} ^{1}\right)= \\
& -\lim _{p \rightarrow 0+}((0-1)-(p \ln p-p))=1-0=1
\end{aligned}
$$

Hence the given improper integral converges.
3. The life span (in years) of a vampire bat can be modeled by a random variable with probability density function

(a) Find the constant c. Show all work. [Hint: All bats must die eventually.]

Solution:
$1=\int_{0}^{\infty} c e^{-x / 10} d x=c \lim _{c \rightarrow \infty} \int_{0}^{c} e^{-x / 10} d x=c \lim _{c \rightarrow \infty}\left(-10 e^{-x / 10} \left\lvert\, \begin{array}{l}c \\ 0\end{array}\right.\right)=$
$c \lim _{c \rightarrow \infty}-10\left(e^{-c / 10}-e^{0}\right)=10 c$
Hence $\mathrm{c}=1 / 10$
(b) Find the probability that a randomly chosen bat will live longer than 11 years. Express your answer to the nearest hundredth.

Solution:
$P($ bat lives longer than 11 years $)=\frac{1}{10} \int_{11}^{\infty} e^{-x / 10} d x=$
$\frac{1}{10} \lim _{c \rightarrow \infty} \int_{11}^{c} e^{-x / 10} d x=\frac{1}{10} \lim _{c \rightarrow \infty}\left((-10) e^{-x / 10} \left\lvert\, \begin{array}{l}c \\ 11\end{array}\right.\right)=$
$(-1) \lim _{c \rightarrow \infty}\left(e^{-c / 10}-e^{-1 / 1 / 10}\right)=e^{-11 / 10} \approx 0.33$

