23 FEBRUARY 2018

1. Find a formula for the general term a_{n} of the sequence given below, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.)
$\{3,8,13,18,23, \ldots\}$
Answer: $a_{n}=5 n-2$
2. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\frac{3^{n}}{1+\pi^{n}}$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $\quad a_{n}=\frac{3^{n}}{1+\pi^{n}} \approx \frac{3^{n}}{\pi^{n}}=\left(\frac{3}{\pi}\right)^{n} \rightarrow 0$
3. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\sqrt[n]{4^{3+4 n}}$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $\quad a_{n}=\sqrt[n]{4^{3+4 n}}=4^{\frac{3+4 n}{n}}=4^{4} 4^{\frac{3}{n}} \rightarrow 4^{4}=256$.
Thus the sequence converges to 256.
4. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=n \sin \frac{3}{n}$ Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_{n}=n \sin \frac{3}{n}=3 \frac{\sin \frac{3}{n}}{\frac{3}{n}} \rightarrow 3$
5. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\ln \left(5 n^{2}+7\right)-\ln \left(n^{2}+3\right)$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_{n}=\ln \left(5 n^{2}+7\right)-\ln \left(n^{2}+3\right)=\ln \frac{5 n^{2}+7}{n^{2}+3} \rightarrow \ln 5$
Thus a_{n} converges to $\ln 5$.
6. Consider the sequence $\left\{a_{n}\right\}$ defined by the pattern $\{0,5,0,0,5,0,0,0,5, \ldots\}$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: This sequence fails to converge because the sequence continues to oscillate between 0 and 5 .
7. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\sqrt{4^{n}+5^{n}}$. Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution:

$$
a_{n}=\sqrt{4^{n}+5^{n}}>\sqrt{4^{n}}=4^{\frac{n}{2}} \rightarrow \infty . \text { Hence the sequence }\left\{a_{n}\right\} \text { diverges. }
$$

8. Consider the sequence $\left\{a_{n}\right\}$ defined by $a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}$.

Determine whether the sequence converges or diverges.
Solution:

$$
0<a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}<\frac{e^{n}+e^{n}}{e^{2 n}-\frac{1}{2} e^{2 n}}=\frac{4}{e^{n}} \rightarrow 0
$$

Hence, by the Squeeze Theorem,

$$
a_{n} \rightarrow 0
$$

9. Determine whether the series $\sum_{n=1}^{\infty}\left(\arctan \left(n^{2}\right)\right)$ converges or diverges. If the series converges, find the sum. (If the series diverges, write DNE. $\sum_{n=1}^{\infty} \arctan \left(n^{2}\right)$

Solution: Since $\arctan \left(n^{2}\right) \rightarrow \frac{\pi}{4} \neq 0$, the $n^{\text {th }}$ term test says that our series $\sum_{n=1}^{\infty}\left(\arctan \left(n^{2}\right)\right)$ is divergent.
10. Determine whether the geometric series is convergent or divergent.
$\sum^{\infty} \frac{(-6)^{n-1}}{7^{n}}$
$n=1$
If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)
Solution: This series is geometric, with first term of $1 / 7$ and common ratio of $-6 / 7$. Since $|-6 / 7|<1$, this geometric series converges.

$$
\text { Its sum is } \frac{a}{1-r}=\frac{\frac{1}{7}}{1-\left(-\frac{6}{7}\right)}=\frac{1}{13 .}
$$

11. Determine whether the series $\sum_{n=1}^{\infty} \ln \left(\frac{n^{2}+9}{8 n^{2}+9}\right)$ is convergent or divergent.

If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)
Solution: Since $\ln \left(\frac{n^{2}+9}{8 n^{2}+9}\right) \rightarrow \ln \frac{1}{8} \neq 0$, the $n^{\text {th }}$ term test may be applied. So we conclude that our series $\sum_{n=1}^{\infty}\left(\arctan \left(n^{2}\right)\right)$ is divergent.
12. Determine whether the series $\sum_{n=1}^{\infty}\left(e^{\frac{5}{n}}-e^{\frac{5}{n+1}}\right)$ is convergent or divergent.

Solution: This series is telescoping.
$s_{j}=\sum_{n=1}^{j}\left(e^{\frac{5}{n}}-e^{\frac{5}{n+1}}\right)=\left(e^{\frac{5}{1}}-e^{\frac{5}{2}}\right)+\left(e^{\frac{5}{3}}-e^{\frac{5}{4}}\right)+\ldots+\left(e^{\frac{5}{j}}-e^{\frac{5}{j+1}}\right)=$

$$
e^{5}-e^{\frac{5}{j+1}} \rightarrow e^{5}-1
$$

Thus $\sum_{n=1}^{\infty}\left(e^{\frac{5}{n}}-e^{\frac{5}{n+1}}\right)$ is convergent.

EXTRA CREDIT

The Kolakoski Sequence begins

$$
1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1, \ldots
$$

The sequence contains only the numbers 1 and 2 . They appear in either a run of one or a run of two. If we start at the beginning of the sequence, then, as illustrated below, the length of the runs (written below the sequence) recreates the original sequence.

$$
\frac{1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1}{2}
$$

Find the next 10 terms of the sequence.

Solution:

$2,2,1,2,1,1,2,1,2,2$
$1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,2, \ldots$

It is an unsolved problem whether the density of 1 s to 2 s for the Kolakoski sequence is $1 / 2$. In other words, if $O(n)$ is the number of $1 s$ appearing among the first n terms and $T(n)$ is the number of $2 s$ appearing among the first n terms, then it is conjectured that $\lim _{n \rightarrow \infty} \frac{O(n)}{T(n)}=0.5$, but nobody knows how to prove it. In 1993, Vaclav Chvatal, a computer scientist and software engineer at Concordia University in Canada has shown that the density of $1 s$ is less than 0.50084 .

