MATH 162 SOLUTIONS: QUIZ IV

23 FEBRUARY 2018

Find a formula for the general term *a_n* of the sequence given below, assuming that the pattern of the first few terms continues. (Assume that *n* begins with 1.)
 {3, 8, 13, 18, 23, ...}

Answer: $a_n = 5n - 2$

2. Consider the sequence $\{a_n\}$ defined by $a_n = \frac{3^n}{1+\pi^n}$ Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_n = \frac{3^n}{1+\pi^n} \approx \frac{3^n}{\pi^n} = \left(\frac{3}{\pi}\right)^n \to 0$

3. Consider the sequence $\{a_n\}$ defined by $a_n = \sqrt[n]{4^{3+4n}}$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_n = \sqrt[n]{4^{3+4n}} = 4^{\frac{3+4n}{n}} = 4^4 4^{\frac{3}{n}} \rightarrow 4^4 = 256.$

Thus the sequence converges to 256.

4. Consider the sequence $\{a_n\}$ defined by $a_n = n \sin \frac{3}{n}$ Determine whether the sequence converges or

diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_n = n \sin \frac{3}{n} = 3 \frac{\sin \frac{3}{n}}{\frac{3}{n}} \rightarrow 3$

5. Consider the sequence $\{a_n\}$ defined by $a_n = \ln(5n^2 + 7) - \ln(n^2 + 3)$

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: $a_n = \ln(5n^2 + 7) - \ln(n^2 + 3) = \ln \frac{5n^2 + 7}{n^2 + 3} \to \ln 5$ Thus a_n converges to $\ln 5$.

6. Consider the sequence {a_n} defined by the pattern {0, 5, 0, 0, 5, 0, 0, 0, 5, ...}
 Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution: This sequence fails to converge because the sequence continues to oscillate between 0 and 5.

7. Consider the sequence $\{a_n\}$ defined by $a_n = \sqrt{4^n + 5^n}$. Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, write DNE.)

Solution:

$$a_n = \sqrt{4^n + 5^n} > \sqrt{4^n} = 4^{\frac{n}{2}} \to \infty$$
. Hence the sequence $\{a_n\}$ diverges.

8. Consider the sequence $\{a_n\}$ defined by $a_n = \frac{e^n + e^{-n}}{e^{2n} - 1}$. Determine whether the sequence converges or diverges.

Solution:

$$0 < a_n = \frac{e^n + e^{-n}}{e^{2n} - 1} < \frac{e^n + e^n}{e^{2n} - \frac{1}{2}e^{2n}} = \frac{4}{e^n} \to 0$$

Hence, by the Squeeze Theorem,

$$a_n \rightarrow 0$$

9. Determine whether the series $\sum_{n=1}^{\infty} (\arctan(n^2))$ converges or diverges. If the series converges, find the sum. (If the series diverges, write DNE. $\sum_{n=1}^{\infty} \arctan(n^2)$

Solution: Since $\arctan(n^2) \rightarrow \frac{\pi}{4} \neq 0$, the n^{th} term test says that our series $\sum_{n=1}^{\infty} (\arctan(n^2))$ is divergent.

10. Determine whether the geometric series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{7^n}$$

If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Solution: This series is geometric, with first term of 1/7 and common ratio of -6/7. Since |-6/7| < 1, this

geometric series converges.

Its sum is
$$\frac{a}{1-r} = \frac{\frac{1}{7}}{1-(-\frac{6}{7})} = \frac{1}{13}$$
.

11. Determine whether the series $\sum_{n=1}^{\infty} \ln\left(\frac{n^2+9}{8n^2+9}\right)$ is convergent or divergent.

If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Solution: Since $\ln\left(\frac{n^2+9}{8n^2+9}\right) \to \ln\frac{1}{8} \neq 0$, the n^{th} term test may be applied. So we conclude that our series $\sum_{n=1}^{\infty} (\arctan(n^2))$ is divergent.

12. Determine whether the series $\sum_{n=1}^{\infty} \left(e^{\frac{5}{n}} - e^{\frac{5}{n+1}} \right)$ is convergent or divergent.

Solution: This series is telescoping.

$$s_{j} = \sum_{n=1}^{j} \left(e^{\frac{5}{n}} - e^{\frac{5}{n+1}} \right) = \left(e^{\frac{5}{1}} - e^{\frac{5}{2}} \right) + \left(e^{\frac{5}{3}} - e^{\frac{5}{4}} \right) + \dots + \left(e^{\frac{5}{j}} - e^{\frac{5}{j+1}} \right) = e^{5} - e^{\frac{5}{j+1}} \to e^{5} - 1$$

Thus $\sum_{n=1}^{\infty} \left(e^{\frac{5}{n}} - e^{\frac{5}{n+1}} \right)$ is convergent.

EXTRA CREDIT

The Kolakoski Sequence begins

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, ...

The sequence contains only the numbers 1 and 2. They appear in either a run of one or a run of two. If we start at the beginning of the sequence, then, as illustrated below, the length of the runs (written below the sequence) recreates the original sequence.

1,	2,2	,1,1	,2,	,1,	2,2	,1,	2,2,	,1,1	.,2,	1,1
1	2	2	1	1	2	1	2	2	1	2

Find the next 10 terms of the sequence. Solution:

2, 2, 1, 2, 1, 1, 2, 1, 2, 2

1,<u>2,2,1,1</u>,2,1,<u>2,2</u>,1,<u>2,2,1,1</u>,2,<u>1,1,2,2</u>,1,2,<u>1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2</u>,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,<u>2,2,1,1</u>,2,1,2,1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,1,2,2,1,1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,

It is an unsolved problem whether the density of 1s to 2s for the Kolakoski sequence is 1/2. In other words, if O(n) is the number of 1s appearing among the first n terms and T(n) is the number of 2s appearing among the first n terms, then it is conjectured that $\lim_{n\to\infty} \frac{O(n)}{T(n)} = 0.5$, but nobody knows how to prove it. In 1993, Vaclav Chvatal, a computer scientist and software engineer at Concordia University in Canada has shown that the density of 1s is less than 0.50084.