

Instructions: Answer any 16 of the following 18 questions. You may answer more than 16 to obtain extra credit. You must show your reasoning; calculator answers are not acceptable.
Each problem is worth 6 points, unless otherwise stated.

1. Explain why the following improper integral converges.

$$
\int_{1}^{\infty} \frac{x^{2}-1}{2 x^{5}+3 x+17} d x
$$

Solution: Since the integrand is roughly, $\frac{x^{2}}{2 x^{5}}=\frac{1}{2} \frac{1}{x^{3}}$, we conjecture that our given integral converges (by virtue of the p-test for Type 1 improper integrals).

Using the Comparison Test, for $x \geq 1,0 \leq \frac{x^{2}-1}{2 x^{5}+3 x+17}<\frac{x^{2}}{x^{5}}=\frac{1}{x^{3}}$ we see that our original integral converges.
2. Determine if the following improper integral converges or diverges. Justify your answer!

$$
\int_{5+}^{7} \frac{1}{\sqrt{x-5}} d x
$$

Solution:

Since $\int_{5+}^{7} \frac{1}{\sqrt{x-5}} d x$ appears to behave as $\int_{0+}^{5} \frac{1}{\sqrt{x}} d x$, we conjecture via the p-test for type 2 improper integrals that our original integral converges.

Using the definition of the improper integral:

$$
\begin{gathered}
\int_{5+}^{7} \frac{1}{\sqrt{x-5}} d x=\lim _{a \rightarrow 5+} \int_{a}^{7} \frac{1}{\sqrt{x-5}} d x=\left.\lim _{a \rightarrow 5+} 2(x-5)^{\frac{1}{2}}\right|_{a} ^{7}= \\
\left.\lim _{a \rightarrow 5+} 2(x-5)^{\frac{1}{2}}\right|_{a} ^{7}=2 \lim _{a \rightarrow 5+}\left(2^{\frac{1}{2}}-(a-5)^{\frac{1}{2}}\right)=2^{3 / 2}
\end{gathered}
$$

3. Consider the recursive sequence defined by

$$
a_{1}=1 \text { and } a_{n+1}=\sqrt{6+a_{n}} \text { for all } n \geq 1
$$

(a) Find a_{1}, a_{2}, a_{3}, and a_{4}. Round your answers to the nearest hundredth.

Solution: We are given that $a_{1}=1$. So $a_{2}=\sqrt{6+a_{1}}=\sqrt{7} \approx 2.65$

Next $a_{3}=\sqrt{6+a_{2}} \approx \sqrt{8.65} \approx 2.94 ;$ Finally, $a_{4}=\sqrt{6+a_{3}} \approx 2.99$
(b) Find the $\lim _{n \rightarrow \infty} a_{n}$ assuming that this limit exists.

Solution: Let $L=\lim _{n \rightarrow \infty} a_{n}$. Then, since $\lim a_{n+1}=\lim a_{n}$ and $\lim a_{n+1}=\sqrt{6+\lim a_{n}}$, we have:
$L=\sqrt{6+L}$ which implies that $L^{2}-L-6=0$. Factoring: $(L-3)(L+2)=0$, so $L=-2$ or $L=3$.
As L is defined to be a limit of positive numbers, we reject the possibility that $L=-2$.
Thus $L=3$.

For each of the following sequences, determine convergence or divergence. In the case of divergence, find the limit of the sequence. Show your work.
4. $a_{n}=n \sin \frac{1}{n}$

Solution: Let $h=1 / n$. Then $n=1 / h$ and as $n \rightarrow \infty, h \rightarrow 0$. Hence:

$$
a_{n}=n \sin \frac{1}{n}=\frac{\sin h}{h} \rightarrow 1 \text { as } h \rightarrow 0
$$

5. $b_{n}=\int_{0}^{n} e^{-5 x} d x$

Solution: $b_{n}=\int_{0}^{n} e^{-5 x} d x=\left(-\frac{1}{5} e^{-5 x} \left\lvert\, \begin{array}{l}n \\ 0\end{array}\right.\right)=-\frac{1}{5}\left(e^{-5 n}-1\right) \rightarrow \frac{1}{5}$
6. $\quad c_{n}=\frac{1}{\arctan (\ln (\ln n))}$

Solution: Since $\ln \ln n \rightarrow \infty$ as $n \rightarrow \infty, \quad c_{n}=\frac{1}{\arctan (\ln (\ln n))} \rightarrow \frac{1}{\frac{\pi}{2}}=\frac{\pi}{2}$
7. $d_{n}=\frac{n(5 n+1)(n-2018)^{5}}{1789+\ln n+(2 n+3)^{3}(n-11)^{4}}$

Solution:

$$
d_{n}=\frac{n(5 n+1)(n-2018)^{5}}{1789+\ln n+(2 n+3)^{3}(n-11)^{4}} \approx \frac{n(5 n) n^{5}}{(2 n)^{3} n^{4}}=\frac{5}{8}
$$

8. $e_{n}=\sqrt{n^{2}+5 n}-\sqrt{n^{2}-21 n}$

Solution: Rationalizing the "numerator" yields:

$$
\begin{gathered}
e_{n}=\sqrt{n^{2}+5 n}-\sqrt{n^{2}-21 n}=\left(\sqrt{n^{2}+5 n}-\sqrt{n^{2}-21 n}\right) \frac{\sqrt{n^{2}+5 n}+\sqrt{n^{2}-21 n}}{\sqrt{n^{2}+5 n}+\sqrt{n^{2}-21 n}}= \\
\frac{\left(n^{2}+5 n\right)-\left(n^{2}-21 n\right)}{\sqrt{n^{2}+5 n}+\sqrt{n^{2}-21 n}}=\frac{26 n}{\sqrt{n^{2}+5 n}+\sqrt{n^{2}-21 n}} \rightarrow 13
\end{gathered}
$$

9. $z_{n}=\int_{2}^{n} \frac{1}{\sqrt{x}-1} d x$

Solution: Let $x=u^{2}$; then $d x=2 u d u$. So

$$
\mathrm{z}_{\mathrm{n}}=\int_{2}^{\mathrm{n}} \frac{1}{\sqrt{\mathrm{x}}-1} \mathrm{dx}=\int_{\sqrt{2}}^{\sqrt{\mathrm{n}}} \frac{1}{\mathrm{u}-1} 2 \mathrm{udu}=2 \int_{\sqrt{2}}^{\sqrt{\mathrm{n}}} \frac{\mathrm{u}}{\mathrm{u}-1} \mathrm{udu}
$$

Next, let $\mathrm{y}=\mathrm{u}-1$; dy $=\mathrm{du}$. So

$$
\begin{aligned}
z_{n}= & 2 \int_{\sqrt{2}}^{\sqrt{n}} \frac{u}{u-1} d u=2 \int_{\sqrt{2}}^{\sqrt{n}} \frac{y+1}{y} d y=2 \int_{\sqrt{2}}^{\sqrt{n}}\left(1+\frac{1}{y}\right) d y= \\
& 2(y+\ln y)\left[\begin{array}{l}
\sqrt{n} \\
\sqrt{2}
\end{array}=2(\sqrt{n}+\ln \sqrt{n}-\sqrt{2}-\ln \sqrt{2})=\infty .\right.
\end{aligned}
$$

Hence, the sequence diverges.
10. [2 pts each] For each of the following statements answer True or False. Briefly justify each answer!
(a) $\mathrm{x}^{3} \ln \mathrm{x}+\mathrm{x}+1=o\left(\mathrm{x}^{4}\right)$

Answer: True
(b) $4^{\mathrm{n}}=o\left(\pi^{\mathrm{n}}\right)$

Answer: False
(c) $\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2015}=O\left(x^{8}\right)$

True since:

$$
\begin{aligned}
& \quad \frac{\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2015}}{x^{8}}=\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{13}+5 x^{11}+x^{9}+2015 x^{8}} \rightarrow 3 \text { as } x \rightarrow \infty \\
& \text { (d) }(\ln x)^{2018}=o(\mathrm{x})
\end{aligned}
$$

Answer: True
(e) $\left(1+\frac{1}{x}\right)^{3 x}=o\left(e^{4 x}\right)$

Answer: True, since $\left(1+\frac{1}{x}\right)^{3 x} \rightarrow e^{3}$

11. Evaluate $\int \arcsin x d x$

Solution: Using integration by parts:
Let $f(x)=\arcsin x$
Then $g^{\prime}(x)=1$
So $g(x)=x$ and $f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$
Thus
$\int \arcsin x d x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x=x \arcsin x-\sqrt{1-x^{2}}+C$
12. Evaluate

$$
\int x^{\frac{1}{4}} \ln x d x
$$

Solution: Use substitution:
Let $u=x^{\frac{1}{4}} ;$ then $x=u^{4}$ and so $d x=4 u^{3} d u$
Thus

$$
\begin{aligned}
& \int x^{\frac{1}{4}} \ln x d x=\int u \ln \left(u^{4}\right) 4 u^{3} d u=\int u 4(\ln u) 4 u^{3} d u=16 \int u^{4} \ln u d u= \\
& \frac{4}{25} x^{\frac{5}{4}}(5 \ln x-4)+C_{\text {since }}
\end{aligned}
$$

$$
\int u^{4} \ln u d u=\frac{1}{25} u^{5}(5 \ln u-1)
$$

13. The graph of the function $p(x)$ is shown below:

Use integration by parts with the selection of $f=x$ and $g^{\prime}=p^{\prime \prime}(x) d x$ along with information from the graph to find the value of $\int_{0}^{2} x p^{\prime \prime}(x) d x$.

Solution: Integration by parts formula

$$
\begin{gathered}
\int_{0}^{2} f(x) g^{\prime}(x) d x=f(x) g(x)\left[\begin{array}{l}
2 \\
0
\end{array}-\int_{0}^{2} f^{\prime}(x) g(x) d x\right. \\
\text { Now let } f(x)=x \text { and } g^{\prime}(x)=p^{\prime \prime}(x) . \\
\text { Then } f^{\prime}(x)=1 \text { and } g(x)=p^{\prime}(x) \\
\text { So } \int_{0}^{2} x p^{\prime \prime}(x) d x=f(x) g(x)\left[\begin{array}{l}
2 \\
0
\end{array}-\int_{0}^{2} f^{\prime}(x) g(x) d x=f(2) g(2)-f(0) g(0)-\int_{0}^{2} 1 p^{\prime}(x) d x=\right. \\
2 p^{\prime}(2)-0-\left(\left.p(x)\right|_{0} ^{2}\right)=2 p^{\prime}(2)-(p(2)-p(0))=2 p^{\prime}(2)-p(2)+p(0)=2(1)-2+0.5=\frac{1}{2}
\end{gathered}
$$

Here we have estimated $p^{\prime}(2)$ using the fact that the graph is virtually linear from $(1,1)$ to $(2,2)$.

For each improper integral given below, determine convergence or divergence. (You will need to use the Comparison Test here.) Justify your answers!
14. $\int_{4}^{\infty} \frac{1}{(\ln x-1)^{2}} d x$

Solution:

Note that $\frac{1}{(\ln x-1)^{2}}>\frac{1}{(\ln x)^{2}}>\frac{1}{x}>0$.
Now $\int_{4}^{\infty} \frac{1}{x} d x$ diverges; so by the Comparison Test,
$\int_{4}^{\infty} \frac{1}{(\ln x-1)^{2}} d x$ diverges as well.
15. $\int_{0+}^{\infty} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x$

Solution:

$$
\int_{0+}^{\infty} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x=\int_{0+}^{1} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x+\int_{1}^{\infty} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x
$$

Now, for $0<x<1, \frac{x+3}{\sqrt{x^{3}+x^{5}}}>\frac{3}{\sqrt{x^{3}}}=3 \frac{1}{x^{\frac{3}{2}}}>0$
Now, invoking the p-test for type 2 improper integrals,

$$
\int_{0+}^{1} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x \text { diverges }
$$

Hence $\int_{0+}^{\infty} \frac{x+3}{\sqrt{x^{3}+x^{5}}} d x$ diverges.
16. Evaluate the integrals below, given that $\mathrm{f}(\mathrm{x})$ is a continuous function for $0 \leq \mathrm{x} \leq 6$ with the following properties:

$$
\begin{array}{lll}
f(0)=2, \quad f(2)=3, \quad f(4)=-1, \quad f(6)=5 ; & f^{\prime}(0)=1, \quad f^{\prime}(2)=4 ; \\
\int_{0}^{2} f(x) d x=3, \quad \int_{2}^{4} f(x) d x=1, \quad \int_{4}^{6} f(x) d x=6 .
\end{array}
$$

(a) $\int_{0}^{2} x f^{\prime}(x) d x=3$.

Solution: Integration by parts.

$$
\begin{gathered}
\text { Let } u(x)=x \text { and } v^{\prime}(x)=f^{\prime}(x) . \text { Then } u^{\prime}(x)=1 \text { and } v(x)=f(x) . \\
\qquad \text { So } \int_{0}^{2} u(x) v^{\prime}(x) d x=u(x) v(x)\left[\begin{array}{l}
2 \\
0
\end{array}-\int_{0}^{2} u^{\prime}(x) v(x) d x=\right. \\
2 f(2)-\int_{0}^{2} f(x) d x=2(3)-3=3
\end{gathered}
$$

(b) $\int_{2}^{4} f^{\prime}(x)(2+3 f(x)) d x=-\mathbf{2 0}$.

Break up the integral into two pieces. The first one is done using the FTC directly, while the second one is handled by noting $f^{\prime}(x) f(x)=\frac{1}{2}\left(f^{2}(x)\right)^{\prime}$.

$$
\begin{aligned}
\int_{2}^{4} f^{\prime}(x)(2+3 f(x)) d x & =2 \int_{2}^{4} f^{\prime}(x) d x+\frac{3}{2} \int_{2}^{4}\left(f^{2}(x)\right)^{\prime} d x \\
& =2(f(4)-f(2))+\frac{3}{2}\left(f(4)^{2}-f(2)^{2}\right)=-20
\end{aligned}
$$

(c) $\int_{0}^{2} f(3 x) d x=\frac{10}{3}$.

By substitution, setting $u=3 x$, so $d x=d u / 3$ and the new limits of integration 0 and 6 , we find:

$$
\int_{0}^{2} f(3 x) d x=\frac{1}{3} \int_{0}^{6} f(u) d u=\frac{1}{3}\left(\int_{0}^{2} f(u) d u+\int_{2}^{4} f(u) d u+\int_{4}^{6} f(u) d u\right)=\frac{3+1+6}{3}=\frac{10}{3} .
$$

17. Consider a group of people who have received a new treatment for pneumonia. Let t be the number of days it takes for a person with pneumonia to fully recover. The probability density function giving the distribution of t is

$$
f(t)=\frac{10}{(1+a t)^{2}}, \quad \text { for } t>0
$$

for some positive constant a.
(a) Give a practical interpretation of the quantity $\int_{3}^{10} f(t) d t$. You need not compute the value of this integral. Use complete sentences.

Solution: The fraction of the people with pneumonia who recovered during a period of three to ten days after treatment.
(b) Find a formula for the cumulative distribution function $\mathrm{F}(\mathrm{t})$ of $\mathrm{f}(\mathrm{t})$ for $\mathrm{t}>0$. Show all your work. Your answer may include the constant a. Your final answer should not include any integrals.

Solution: $\quad F(t)=\int_{0}^{t} \frac{10}{(1+a x)^{2}} d x=-\left.\frac{10}{a(1+a x)}\right|_{0} ^{t}=\frac{10}{a}-\frac{10}{a(1+a t)}$
(c) Determine the value of a. Show your work.

Solution: Since $f(t)$ is a probability density function, then $1=\int_{0}^{\infty} \frac{10}{(1+a x)^{2}} d x$. Hence

$$
\int_{0}^{\infty} \frac{10}{(1+a x)^{2}} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{10}{(1+a x)^{2}} d x=\lim _{b \rightarrow \infty} \frac{10}{a}-\frac{10}{a(1+a b)}=\frac{10}{a} .
$$

Hence $a=10$.
18. The lifetime t (in years) of a tree has probability density function

$$
f(t)= \begin{cases}\frac{a}{(t+1)^{p}} & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

where $a>0$ and $p>1$.

(a) Use the comparison method to find the values of p for which the average lifetime M is finite $(\mathrm{M}<\infty)$.

Properly justify your answer.
Solution: The average lifetime M is given by the formula $M=\int_{0}^{\infty} t \frac{a}{(t+1)^{p}} d t$.
Since

$$
t \frac{a}{(t+1)^{p}} \leq t \frac{a}{t^{p}}=\frac{a}{t^{p-1}} \quad \text { for } t>0,
$$

then

$$
\int_{1}^{\infty} t \frac{a}{(t+1)^{p}} d t \leq \int_{1}^{\infty} \frac{a}{t^{p-1}} d t
$$

We know that $a \int_{1}^{\infty} \frac{1}{t^{p-1}}$ converges precisely when $p-1>1(p>2)$ by the p-test, so the first integral converges precisely when $p>2$. This implies that the average lifetime M is finite for $p>2$.
(b) Find a formula for a in terms of p. Show all your work.

Solution: We know that

$$
1=\int_{0}^{\infty} \frac{a}{(t+1)^{p}} d t
$$

We use u-substition with $u=t+1$ to calculate the integral:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{a}{(t+1)^{p}} d t & =\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{a}{(t+1)^{p}} d t \\
& =\lim _{b \rightarrow \infty} \int_{1}^{b+1} \frac{a}{u^{p}} d u=a \lim _{b \rightarrow \infty} \int_{1}^{b+1} u^{-p} d u \\
& =\left.a \lim _{b \rightarrow \infty} \frac{u^{-p+1}}{(-p+1)}\right|_{1} ^{b+1}=\left.a \lim _{b \rightarrow \infty} \frac{1}{(-p+1) u^{p-1}}\right|_{1} ^{b+1} \\
\text { (since } p>1) & =\frac{a}{p-1} .
\end{aligned}
$$

Therefore $1=\frac{a}{p-1}$, so $a=p-1$.
(c) Let $\mathrm{C}(\mathrm{t})$ be the cumulative distribution function of $\mathrm{f}(\mathrm{t})$. For a given tree, what is the practical interpretation of the expression $1-\mathrm{C}(30)$?

Solution: $1-C(30)$ is the probability that a given tree lives at least 30 years.

Extra Credit A:

[MIT integration bee]

$$
\int e^{\arccos x} d x
$$

Hint: Begin with a u substitution.
Solution: Let $u=\arccos x$. Then $x=\cos u$, and $d x=-\sin u$.
So

$$
\int e^{\arccos x} d x=-\int e^{u} \sin u d u
$$

Using integration by parts (twice) we find that $\int e^{u} \sin u d u=\frac{1}{2} e^{u}(\sin u-\cos u)+C$.
Note that $\cos u=x$ and $\sin u=\sqrt{1-\cos ^{2} u}=\sqrt{1-x^{2}}$.
Finally,

$$
\int e^{u} \sin u d u=\frac{1}{2} e^{u}(\sin u-\cos u)+C=\frac{1}{2} e^{\arccos x}\left(x-\sqrt{1-x^{2}}\right)+C
$$

Extra Credit B:

A bouncy ball is launched up 20 feet from the floor and then begins bouncing. Each time the ball bounces up from floor, it bounces up again to a height that is 60% the height of the previous bounce. (For example, when it bounces up from the floor after falling 20 ft ., the ball will bounce up to a height of $0.6(20)=12$ feet.) Consider the following sequences, defined for $\mathrm{n} \geq 1$:

- Let h_{n} be the height, in feet, to which the ball rises when the ball leaves the ground for the nth time. So $h_{1}=20$ and $h_{2}=12$
- Let f_{n} be the total distance, in feet, that the ball has traveled (both up and down) when it bounces on the ground for the nth time. For example, $f_{1}=40$ and $f_{2}=40+24=64$.
(a) Find the values of h_{3} and f_{3}.

Solution: $\quad h_{3}=(0.6)(12)=7.2$
$f_{3}=64+14.4=78.4$
(b) Find a closed form expression for h_{n} and f_{n}. ("Closed form" here means that your answers should not include sigma notation or ellipses (...). Your answers should also not involve recursive formulas!)

Solution: $\quad h_{n}=0.6 h_{n-1}$ is a recursive relationship that holds between the terms of the sequence h_{n} for $n>1$, and this recursive formula means that h_{n} is a geometric sequence. The (constant) ratio of successive terms is equal to 0.6 and first term is $h_{1}=20$. So we see that $h_{n}=20(0.6)^{n-1}$.

Note that the term f_{n} is twice the sum of the first n terms of the h_{n} sequence. (Twice because the bouncy ball travels both up and down.) We use the formula for a partial sum of a geometric series (i.e. a finite geometric series) to find

$$
\begin{aligned}
f_{n} & =2\left(h_{1}+h_{2}+\ldots+h_{n}\right)=2\left(20+\ldots+20(0.6)^{n-1}\right) \\
& =\frac{2(20)\left(1-(0.6)^{n}\right)}{1-0.6}=\frac{40\left(1-(0.6)^{n}\right)}{0.4}=100\left(1-(0.6)^{n}\right) .
\end{aligned}
$$

Answer: $\quad h_{n}=\frac{20 \cdot(0.6)^{n-1}}{} \quad$ and $f_{n}=\underline{\frac{40\left(1-(0.6)^{n}\right)}{0.4}=100\left(1-(0.6)^{n}\right)}$
(c) Decide whether the given sequence converges or diverges. If it does converge, compute its sum.
(i) The sequence $\left\{f_{n}\right\}$ converges to 100 .

Solution: The limit of the sequence f_{n} is

$$
\lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \frac{40\left(1-(0.6)^{n}\right)}{0.4}=\frac{40}{0.4}=100 .
$$

Since this limit exists, the sequence f_{n} converges, and this computation shows that it converges to 100 .

Alternatively, as we saw in part \mathbf{b}, the sequence f_{n} is the sequence of partial sums of the geometric series $\sum_{k=1}^{\infty} 2 h_{k}=\sum_{k=1}^{\infty} 40(0.6)^{k-1}$. Since $r=0.6$ and $|0.6|<1$, we know that this geometric series converges to $\frac{40}{1-0.6}=100$. By definition of series convergence, this sum is the limit of the sequence of partial sums f_{n}, i.e. $\lim _{n \rightarrow \infty} f_{n}=100$.
(ii) The series $\sum_{n=0}^{\infty} h_{n}$ converges and its sum is 50 .

Solution: Next, we consider the series $\sum_{n=1}^{\infty} h_{n}$, which we know is geometric from part b. Since the common ratio between successive terms is 0.6 , the series converges, and the formula for the sum of a convergent geometric series gives us

$$
\sum_{n=1}^{\infty} h_{n}=\sum_{n=1}^{\infty} 20 \cdot(0.6)^{n-1}=\frac{20}{1-0.6}=50
$$

Alternatively, since the sequence f_{n} is the sequence of partial sums of the series $\sum_{k=1}^{\infty} 2 h_{k}$, we have $\sum_{n=1}^{\infty} h_{n}=\frac{1}{2} \lim _{n \rightarrow \infty} f_{n}=\frac{100}{2}=50$.

If a lion could talk, we could not understand him.

- Ludwig Wittgenstein

