
MATH 162          Solutions:  TEST II     28 march 2018 

 

Instructions:  Answer any 11 of the 13.     You may answer more than 11 to earn 

extra credit.                               

 
1.   Determine the value of the following two infinite series: 

(a)    𝜋 −
𝜋3

3!
+

𝜋5

5!
−

𝜋7

7! 
 +… 

(Hint:  Use a well-known Maclaurin series.) 

 

Solution:   

 

Since  sin 𝑥 = 𝑥 − 
𝑥3

3!
+

𝑥5

5!
− ⋯ , replacing x by 𝜋 yields:  

 

𝜋 − 
𝜋3

3!
+

𝜋5

5!
− ⋯ = sin 𝜋 = 0 

 

 

(b) ∑  
13𝑛

52𝑛+1
∞  
𝑛=1    

Solution:   

Note that this series is geometric with 1st term = 
13

53 and common ratio of 
13

  25
 . 

Hence  

∑  
13𝑛

52𝑛+1 =
𝑎

1−𝑟
∞  
𝑛=1 =

13

53

1−
13

  25

=  
13

125−65
=

𝟏𝟑

𝟔𝟎
.   

 

 

2. Without using l'Hôpital’s rule, find the following limit: 

lim
𝑥→0

arctan 𝑥 − 𝑥

sin 𝑥 − 𝑥
 

 

Solution:   

arctan 𝑥−𝑥

sin 𝑥−𝑥
=

(𝑥−
𝑥3

3
+

𝑥5

5
−⋯ )−𝑥

(𝑥−
𝑥3

3!
+

𝑥5

5!
−⋯ )−𝑥

 = 
−

𝑥3

3
+

𝑥5

5
−⋯

−
𝑥3

3!
 +

𝑥5

5!
−⋯

=
−

1

3
+

𝑥2

5
−⋯

−
1

3!
+

𝑥2

5!
−⋯

 →
−

1

3

−
1

3!

= 2 𝑎𝑠 𝑥 → 0. 
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3.  The Bessel function of order one is defined by its Maclaurin series, viz: 

 

𝐽1(𝑥) = ∑
(−1)𝑛

𝑛!(𝑛+1)! 22𝑛+1   𝑥2𝑛+1∞
𝑛=0   

 

(a) Compute  𝐽1
(2019)(0).  Do not simplify.  

 

Solution:   

 

The 2019th derivative of J1 at x = 0 corresponds to 2019! times the 1009th coefficient in the 

Maclaurin series given above.  (This is true since 2n+1=2019 implies that n = 1009.) 

Thus 𝐽1
(2019)(0) =

−(2019)!

(1009)! (1010)! 22019 

 
 

(b) Find P5(x), the Maclaurin polynomial of order 5 that approximates J1(x) near 0. 

 

 

Solution:   

Computing   ∑
(−1)𝑛

𝑛!(𝑛+1)! 22𝑛+1
  𝑥2𝑛+12

𝑛=0  we find: 

𝑃5(𝑥) =  
𝑥

2 
−

𝑥3

16
 +

𝑥5

384
     

 
 

 

(c)  Use the Maclaurin polynomial from part (b) to compute: 

lim
𝑥→0

𝐽1(𝑥) −
1
2

𝑥

𝑥3
 

Solution:   

lim
𝑥→0

𝐽1(𝑥) −
1
2

𝑥

𝑥3
= lim

𝑥→0
  

𝑥
2 

−
1
2

𝑥 −
𝑥3

16
 +

𝑥5

384
𝑥3

= −
1

16
 

 

 

 

3. Using the formula for the geometric series, find the Maclaurin series expansion of 

 𝑓(𝑥) =
1

(1−𝑥)3
.   Hint:  Differentiate basic geometric series. 

What is the coefficient of xn in this expansion? 
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Solution:   

 Begin with the geometric series: 

 
1

1−𝑥
= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯  valid for |x| < 1. 

 

Differentiate each side to obtain: 

 

1

(1 − 𝑥)2
= 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + ⋯ + 𝑛𝑥𝑛−1 + ⋯ 

 
Differentiate once again to obtain: 

2

(1 − 𝑥)3
= 2 + 3 ∙ 2 𝑥 + 4 ∙ 3 𝑥2 + 5 ∙ 4 𝑥3 + ⋯ + 𝑛(𝑛 − 1)𝑥𝑛−2 + ⋯ 

 

Adjusting for the xn term: 

 

2

(1 − 𝑥)3
= 2 + 3 ∙ 2 𝑥 + 4 ∙ 3 𝑥2 + 5 ∙ 4 𝑥3 + ⋯ + (𝑛 + 2)(𝑛 + 1)𝑥𝑛 + ⋯ 

 

Finally: 

 
1

(1 − 𝑥)3
=

1

2
( 2 + 3 ∙ 2 𝑥 + 4 ∙ 3 𝑥2 + 5 ∙ 4 𝑥3 + ⋯ + (𝑛 + 2)(𝑛 + 1)𝑥𝑛 + ⋯  ) 

 

Thus the coefficient of xn is  
(𝑛+2)(𝑛+1)

2
. 

 

 

5. Given y = G(x) below, calculate the value of  G(1313)(0).  (Express your answer in factorial form.) 

)sinh()( 23 xxxG   

 

Solution:   

 

Beginning with the Maclaurin series for sinh t and then replacing t by x2: 

 

sinh 𝑡 =
𝑡

1!
+

𝑡3

3!
+

𝑡5

5!
+ ⋯ +

𝑡2𝑛+1

(2𝑛 + 1)!
+ ⋯ 
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 sinh(x2) =
x2

1!
+

𝑥6

3!
+

𝑥10

5!
+ ⋯ +

𝑥4𝑛+2

(2𝑛 + 1)!
+ ⋯ 

Now, multiplying by x3 yields: 
 

  ...
)!12(

...
!5!3!1

sinh)(
541395

23 





n

xxxx
xxxG

n

 

Now, the general Maclaurin series of G(x) is: 

...
!

)0(
...

!1

)0('
)0()(

)(

 k
k

x
k

G
x

G
GxG

 

Thus the coefficient of x1313 is G(1313(0) / 1313! 

Now the coefficient of  x1313 in the series for x3 sinh (x2) occurs when 4n + 5=1313, that 

is, when n =327 (and so 2n + 1=655).  Thus this coefficient is:    1 / 655! 

Equating G(1313)(0) / 1313! with 1 /655!,   we find that: 

G(1313)(0)   =  1313!  /  655! 

 

6.  For each series below, determine absolute convergence, conditional convergence or divergence.   

Justify each answer.   

 

2

)
1

1()1()(
3

nn

n n
a 





  

 

Solution: 𝐿𝑒𝑡 𝑎𝑛 = (−1)𝑛 (1 +
1

𝑛
)

−𝑛2

 

Then applying the nth root test: 

 

|𝑎𝑛|𝑛 = ((1 +
1

𝑛
)

−𝑛2

)

1

𝑛

=(1 +
1

𝑛
)

−𝑛
=

1

(1+
1

𝑛
)

𝑛 →
1

𝑒
< 1 

Thus the series converges absolutely. 
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1

)/1sin()1()(
k

k kkb
 

 

Solution:  This series diverges by the nth term test:    𝑘 sin
1

𝑘
 → 1 𝑎𝑠 𝑘 → 0. 

 

7.  For each of the two power series below, determine the radius of convergence. Do not investigate 

the behavior of each power series at the endpoints.   

 

(𝑎)   ∑
𝑛13

13𝑛

∞

𝑛=1

 (𝑥 − 13)𝑛 

 

Solution:   

 

Using the ratio test: 

 

|13|
13

1
|13|)/11(

13

1

|13|
)1(

13

1

)13(
13

)13(
13

)1(

13

13

13

13

1

1

13











 



xxn

x
n

n

x
n

x
n

n

n

n

n

 

 

Thus the series converges absolutely for |x – 13| < 13.  

The radius of convergence is 13. 

 

 

    

n

n

x
n

n
b )13(

3

1
)(

1
14

13









 

 

Solution: Using the ratio test: 
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|
√

1+(𝑛+1)

3+(𝑛+1)14   (𝑥−13)𝑛+1

√1+𝑛13

3+𝑛14   (𝑥−13)𝑛

| = √
𝑛+2

1+𝑛3 √
3+𝑛14

3+(𝑛+1)13  |𝑥 − 13| → |𝑥 − 13| 

 

Radius of convergence = 1 

 
 

8. For the power series below, determine the interval of convergence.  Investigate end-point behavior. 

n

n

x
n

n
a )3(

ln
)(

1
2





 

 

Solution:    Using the ratio test:    

 

|

(ln(𝑛 + 1)
(𝑛 + 1)2 (𝑥 − 3)𝑛+1

ln 𝑛
𝑛2  (𝑥 − 3)𝑛

| → |𝑥 − 3| 

Radius of convergence = 1 

When x=4, ∑
ln 𝑛

𝑛2 (𝑥 − 3)𝑛 =∞
𝑛=1 ∑

ln 𝑛

𝑛2
∞
𝑛=1   Which converges absolutely 

by the comparison and p-tests (since ln n < √𝑛  for large n. 

When x=2, ∑
ln 𝑛

𝑛2 (−1)𝑛∞
𝑛=1     which converges absolutely from the 

previous analysis.   

 

(b)  

    

n

n
n

n

x
e

e



 1
4

3

1
 

 

 

Solution:   radius of convergence = e 

 Using the ratio test:    
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|

𝑒3(𝑛+1)

1 + 𝑒4(𝑛+1) 𝑥𝑛+1

𝑒3𝑛

1 + 𝑒4𝑛  𝑥𝑛

| =
𝑒3(𝑛+1)

𝑒3𝑛
 

1 + 𝑒4𝑛

1 + 𝑒4(𝑛+1)
|𝑥| = 

 

 

𝑒3
1 + 𝑒−4𝑛

𝑒−4𝑛 + 𝑒4
|𝑥| =

1

𝑒
 |𝑥| 

 

Hence the radius of convergence is e. 

 

When x = e, ∑
𝑛13

13𝑛
∞
𝑛=1  (𝑥 − 13)𝑛 

 

9.  Find the radius of convergence of convergence: 

 

n

n

n

x
n

)4(
1

1
1

2















 

 

 

Solution:   

 

Invoking the nth root test: 

 

44
1

1)4(
1

1

/12


















 xex

n
x

n

n
n

n

n

 

 

Thus, the series converges absolutely for e |x – 4| < 1.  So the interval of convergence is  

(4 – 1/e, 4 + 1/e) and the radius of convergence is 1/e.  

 

 

10.  For each improper integral below, determine convergence or divergence.  Justify each answer! 

dx
x

x
A 




1

3

ln2015
)(  

Solution:   

Since ln x < x   for x > 1, 
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0 <
2015 + 𝑥

𝑥3
=

2016

𝑥2
 

Now using the Comparison Test, and the p-test for p = 2, we see that our 

improper integral converges. 

 

dx
e

xex
B

x

x








0

4

20152 )(ln1
)(





 

 

Solution:   

 

  Observe that 

4/

2

)2/1(

2

)4()4(

2

)4(

)4(

2

)4(

2

4

2

4

20152

1
3

1
3

1
3

3311

)(ln1
0

x
xx

x

x

xx

x

xxx

x

x

e
ee

e

e

e

x

e

x

e

eexe

e

xex

















 









 

Thus, invoking the Comparison Test, our original integral converges.   

 

 

11.     Find the radius of convergence of each of the following power series: 

n

n

x
n

n
a 3

1 )12)...(7)(5)(3)(1(

!
)( 



 
 

 

Solution:   

Using the ratio test: 

33

3

33

||
2

1
||

12

1
)1(

||
)12)...(7)(5)(3)(1(

!

||
)12)(12)...(7)(5)(3)(1(

!)1(

xx
n

n

x
n

n

x
nn

n

n

n










 

 

 

 

Now, the series converges absolutely when  ½ |x|3 < 1. 
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Thus the interval of convergence of our series is (− √2
3

 , √2
3

) and the radius of 

convergence is √2
3

 . 

 

 
n

n

n

x
n

n
b )15(

1789

47
)(

1
33/4

2









 

 

Solution:   

 

Applying the ratio test, 

 

 

 
 

|15|7|15|
1789)1(

1789
7

|15|
1789)1(

1789
7

|15|

|15|

1789

47

1789)1(

4)1(7

3

3/4

3/4

33/4

33/41

33/4

2

33/4

21


















































xx
n

n

x
n

n

x

x

n

n

n

n

n

n

n

n

 

 

7𝑛+1(√(𝑛 + 1)2 + 4

((𝑛 + 1)
4
3 + 1789)

3

7𝑛(√𝑛2 + 4

(𝑛
4
3 + 1789)

3

 |𝑥 − 15| → 7|𝑥 − 15| 

Thus the interval of convergence of our series is (15 −
1

7
, 15 +

1

7
) and the radius of 

convergence is 
1

7
 . 

 

 

12.   Without using l'Hôpital’s rule, find: 
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1)cos(
2

9

2

9
31

lim
4

6423

0

2





 x

xxxe x

x
 

 

Solution:   

 

Since 

)(
!4!3!2!1

1 5
432

xO
xxxx

ex   

 

it follows that: 

     

)(
8

27

2

9

2

9
31

)(
24

81

6

27

2

9
31

)(
!4

3

!3

3

!2

3

!1

3
1

10
864

2

10
864

2

10

4232222
3 2

xO
xxx

x

xO
xxx

x

xO
xxxx

e x







 
 

Since   

)(
!4!2

1cos 6
42

xO
xx

x 
 

it follows that: 

  )(
!2

1cos 16
8

4 xO
x

x 
 

Hence: 
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4

27

!2

1
8

27

)(
!2

)(
8

27

1)(
!2

1

2

9

2

9
31)(

8

27

2

9

2

9
31

1)cos(
2

9

2

9
31

16
8

10
8

16
8

64210
864

2

4

6423 2






















xO
x

xO
x

xO
x

xxxxO
xxx

x

x

xxxe x

 

 

 

 

13.   Let  𝑓(𝑥) = 2𝑒
𝑥

2.    

 

(a)  Find P2(x), the Taylor polynomial for f(x) of degree 2 centered at x = 1. 

 

Solution:   

𝑓(1) = 2√𝑒;  𝑓′(1) = √𝑒;   𝑓′′(1) =
1

2
√𝑒 

 

So 𝑃2(𝑥) = 2√𝑒 + √𝑒 (𝑥 − 1) +
1

2
 √𝑒 (𝑥 − 1)2 

 

 

(b) Graph the functions f(x) and P2(x) for 0 ≤ x ≤ 2 on the same set of axes.  Label each function 

clearly. 

 

(c) Use the polynomial P2(x) that you wrote in part (a) to estimate f(0.1) and f(1.1). 
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Taylor series 

 

The Taylor series of f(x) centered at x = c is ∑
𝑓(𝑛)(𝑐)

𝑛!
∞
𝑛=0  (𝑥 − 𝑐)𝑛. 

1

1 − 𝑥
= ∑ 𝑥𝑛 = 1 + 𝑥 + 𝑥2

∞

𝑛=0

+ 𝑥3 + ⋯     𝑓𝑜𝑟 |𝑥| < 1 
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