MATH 162
 SOLUTIONS: TEST II 28 MARCH 2018

Instructions: Answer any 11 of the 13 . You may answer more than 11 to earn extra credit.

1. Determine the value of the following two infinite series:
(a) $\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\ldots$
(Hint: Use a well-known Maclaurin series.)

Solution:

Since $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots$, replacing x by π yields:

$$
\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\cdots=\sin \pi=0
$$

(b) $\quad \sum_{n=1}^{\infty} \frac{13^{n}}{5^{2 n+1}}$

Solution:

Note that this series is geometric with $1^{\text {st }}$ term $=\frac{13}{5^{3}}$ and common ratio of $\frac{13}{25}$.
Hence

$$
\sum_{n=1}^{\infty} \frac{13^{n}}{5^{2 n+1}}=\frac{a}{1-r}=\frac{\frac{13}{5^{3}}}{1-\frac{13}{25}}=\frac{13}{125-65}=\frac{13}{60} .
$$

2. Without using l'Hôpital's rule, find the following limit:

$$
\lim _{x \rightarrow 0} \frac{\arctan x-x}{\sin x-x}
$$

Solution:

$\frac{\arctan x-x}{\sin x-x}=\frac{\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots\right)-x}{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)-x}=\frac{-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots}{-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots}=\frac{-\frac{1}{3}+\frac{x^{2}}{5}-\cdots}{-\frac{1}{3!}+\frac{x^{2}}{5!}-\cdots} \rightarrow \frac{-\frac{1}{3}}{-\frac{1}{3!}}=2$ as $x \rightarrow 0$.
3. The Bessel function of order one is defined by its Maclaurin series, viz:

$$
J_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+1)!2^{2 n+1}} x^{2 n+1}
$$

(a) Compute $J_{1}{ }^{(2019)}(0)$. Do not simplify.

Solution:

The $2019^{\text {th }}$ derivative of J_{1} at $\mathrm{x}=0$ corresponds to 2019 ! times the $1009^{\text {th }}$ coefficient in the Maclaurin series given above. (This is true since $2 \mathrm{n}+1=2019$ implies that $\mathrm{n}=1009$.)

Thus $J_{1}{ }^{(2019)}(0)=\frac{-(2019)!}{(1009)!(1010)!2^{2019}}$
(b) Find $\mathrm{P}_{5}(\mathrm{x})$, the Maclaurin polynomial of order 5 that approximates $\mathrm{J}_{1}(\mathrm{x})$ near 0 .

Solution:

Computing $\quad \sum_{n=0}^{2} \frac{(-1)^{n}}{n!(n+1)!2^{2 n+1}} x^{2 n+1}$ we find:

$$
P_{5}(x)=\frac{x}{2}-\frac{x^{3}}{16}+\frac{x^{5}}{384}
$$

(c) Use the Maclaurin polynomial from part (b) to compute:

$$
\lim _{x \rightarrow 0} \frac{J_{1}(x)-\frac{1}{2} x}{x^{3}}
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{J_{1}(x)-\frac{1}{2} x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{x}{2}-\frac{1}{2} x-\frac{x^{3}}{16}+\frac{x^{5}}{384}}{x^{3}}=-\frac{1}{16}
$$

3. Using the formula for the geometric series, find the Maclaurin series expansion of

$$
f(x)=\frac{1}{(1-x)^{3}} . \text { Hint: Differentiate basic geometric series. }
$$

What is the coefficient of x^{n} in this expansion?

Solution:

Begin with the geometric series:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots \text { valid for }|\mathrm{x}|<1
$$

Differentiate each side to obtain:

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots+n x^{n-1}+\cdots
$$

Differentiate once again to obtain:

$$
\frac{2}{(1-x)^{3}}=2+3 \cdot 2 x+4 \cdot 3 x^{2}+5 \cdot 4 x^{3}+\cdots+n(n-1) x^{n-2}+\cdots
$$

Adjusting for the x^{n} term:

$$
\frac{2}{(1-x)^{3}}=2+3 \cdot 2 x+4 \cdot 3 x^{2}+5 \cdot 4 x^{3}+\cdots+(n+2)(n+1) x^{n}+\cdots
$$

Finally:

$$
\frac{1}{(1-x)^{3}}=\frac{1}{2}\left(2+3 \cdot 2 x+4 \cdot 3 x^{2}+5 \cdot 4 x^{3}+\cdots+(n+2)(n+1) x^{n}+\cdots\right)
$$

Thus the coefficient of X^{n} is $\frac{(n+2)(n+1)}{2}$.
5. Given $\mathrm{y}=\mathrm{G}(\mathrm{x})$ below, calculate the value of $\mathrm{G}^{(1313)}(0)$. (Express your answer in factorial form.)

$$
G(x)=x^{3} \sinh \left(x^{2}\right)
$$

Solution:

Beginning with the Maclaurin series for sinh t and then replacing tby x^{2} :

$$
\sinh t=\frac{t}{1!}+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\cdots+\frac{t^{2 n+1}}{(2 n+1)!}+\cdots
$$

$$
\sinh \left(\mathrm{x}^{2}\right)=\frac{\mathrm{x}^{2}}{1!}+\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots+\frac{x^{4 n+2}}{(2 n+1)!}+\cdots
$$

Now, multiplying by x^{3} yields:

$$
G(x)=x^{3} \sinh \left(x^{2}\right)=\frac{x^{5}}{1!}+\frac{x^{9}}{3!}+\frac{x^{13}}{5!}+\ldots+\frac{x^{4 n+5}}{(2 n+1)!}+\ldots
$$

Now, the general Maclaurin series of $G(x)$ is:

$$
G(x)=G(0)+\frac{G^{\prime}(0)}{1!} x+\ldots+\frac{G^{(k)}(0)}{k!} x^{k}+\ldots
$$

Thus the coefficient of x^{1313} is $G^{(1313}(0) / 1313!$
Now the coefficient of x^{1313} in the series for $x^{3} \sinh \left(x^{2}\right)$ occurs when $4 n+5=1313$, that is, when $n=327$ (and so $2 n+1=655$). Thus this coefficient is: $1 / 655$!
Equating $G^{(1313)}(0) / 1313!$ with $1 / 655!$, we find that:

$$
G^{(1313)}(0)=1313!/ 655!
$$

6. For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.
(a) $\sum_{n=3}^{\infty}(-1)^{n}\left(1+\frac{1}{n}\right)^{-n^{2}}$

Solution: Let $a_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)^{-n^{2}}$
Then applying the $n^{\text {th }}$ root test:

$$
\left|a_{n}\right|^{n}=\left(\left(1+\frac{1}{n}\right)^{-n^{2}}\right)^{\frac{1}{n}}=\left(1+\frac{1}{n}\right)^{-n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}<1
$$

Thus the series converges absolutely.
(b) $\sum_{k=1}^{\infty}(-1)^{k} k \sin (1 / k)$

Solution: This series diverges by the $\mathrm{n}^{\text {th }}$ term test: $k \sin \frac{1}{k} \rightarrow 1$ as $k \rightarrow 0$.
7. For each of the two power series below, determine the radius of convergence. Do not investigate the behavior of each power series at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{n^{13}}{13^{n}}(x-13)^{n}$

Solution:

Using the ratio test:

$$
\begin{aligned}
& \left|\frac{\frac{(n+1)^{13}}{13^{n+1}}(x-13)^{n+1}}{\frac{n^{13}}{13^{n}}(x-13)^{n}}\right|=\frac{1}{13} \frac{(n+1)^{13}}{n^{13}}|x-13|= \\
& \frac{1}{13}(1+1 / n)^{13}|x-13| \rightarrow \frac{1}{13}|x-13|
\end{aligned}
$$

Thus the series converges absolutely for $|x-13|<13$.
The radius of convergence is 13 .
(b) $\sum_{n=1}^{\infty} \sqrt{\frac{1+n^{13}}{3+n^{14}}}(x-13)^{n}$

Solution: Using the ratio test:

$$
\left|\frac{\sqrt{\frac{1+(n+1)}{3+(n+1)^{14}}}(x-13)^{n+1}}{\sqrt{\frac{1+n^{13}}{3+n^{14}}}(x-13)^{n}}\right|=\sqrt{\frac{n+2}{1+n^{3}}} \sqrt{\frac{3+n^{14}}{3+(n+1)^{13}}}|x-13| \rightarrow|x-13|
$$

Radius of convergence $=1$

8. For the power series below, determine the interval of convergence. Investigate end-point behavior.
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}(x-3)^{n}$

Solution: Using the ratio test:

$$
\left|\frac{\frac{(\ln (n+1)}{(n+1)^{2}}(x-3)^{n+1}}{\frac{\ln n}{n^{2}}(x-3)^{n}}\right| \rightarrow|x-3|
$$

Radius of convergence $=1$

When $x=4, \sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}(x-3)^{n}=\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ Which converges absolutely by the comparison and p-tests (since $\ln n<\sqrt{n}$ for large n.

When $x=2, \sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}(-1)^{n} \quad$ which converges absolutely from the previous analysis.
(b)

$$
\sum_{n=1}^{\infty} \frac{e^{3 n}}{1+e^{4 n}} x^{n}
$$

Solution: radius of convergence $=\mathrm{e}$
Using the ratio test:

$$
\begin{gathered}
\left|\frac{\frac{e^{3(n+1)}}{1+e^{4(n+1)}} x^{n+1}}{\frac{e^{3 n}}{1+e^{4 n}} x^{n}}\right|=\frac{e^{3(n+1)}}{e^{3 n}} \frac{1+e^{4 n}}{1+e^{4(n+1)}}|x|= \\
e^{3} \frac{1+e^{-4 n}}{e^{-4 n}+e^{4}}|x|=\frac{1}{e}|x|
\end{gathered}
$$

Hence the radius of convergence is e.
When $\mathrm{x}=\mathrm{e}, \sum_{n=1}^{\infty} \frac{n^{13}}{13^{n}}(x-13)^{n}$
9. Find the radius of convergence of convergence:

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}(x-4)^{n}
$$

Solution:

Invoking the $n^{\text {th }}$ root test:

$$
\left.\left(1+\frac{1}{n}\right)^{n^{2}}(x-4)^{n}\right|^{1 / n}=\left(1+\frac{1}{n}\right)^{n}|x-4| \rightarrow e|x-4|
$$

Thus, the series converges absolutely for $e|x-4|<1$. So the interval of convergence is $(4-1 / e, 4+1 / e)$ and the radius of convergence is $1 / e$.
10. For each improper integral below, determine convergence or divergence. Justify each answer!

$$
\text { (A) } \int_{1}^{\infty} \frac{2015+\ln x}{x^{3}} d x
$$

Solution:

Since $\ln x<x$ for $x>1$,

$$
0<\frac{2015+x}{x^{3}}=\frac{2016}{x^{2}}
$$

Now using the Comparison Test, and the p-test for $p=2$, we see that our improper integral converges.
(B) $\int_{0}^{\infty} \frac{1+x^{2} e^{\pi x}+(\ln x)^{2015 \pi}}{\pi+e^{4 x}} d x$

Solution:

Observe that

$$
\begin{aligned}
& 0<\frac{1+x^{2} e^{\pi x}+(\ln x)^{2015 \pi}}{\pi+e^{4 x}}<\frac{e^{\pi x}+x^{2} e^{\pi x}+e^{\pi x}}{e^{4 x}}= \\
& \frac{1+x^{2}+1}{e^{(4-\pi) x}}<\frac{3 x^{2}}{e^{(4-\pi) x}}<\frac{3 e^{\frac{(4-\pi)}{2} x}}{e^{(4-\pi) x}}=3 \frac{1}{e^{\frac{(4-\pi)}{2} x}}<3 \frac{1}{e^{\frac{(1 / 2)}{2} x}}=3 \frac{1}{e^{x / 4}}
\end{aligned}
$$

Thus, invoking the Comparison Test, our original integral converges.
11. Find the radius of convergence of each of the following power series:
(a)

$$
\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)} x^{3 n}
$$

Solution:

Using the ratio test:

$$
\frac{\frac{(n+1)!}{(1)(3)(5)(7) \ldots(2 n-1)(2 n+1)}|x|^{3 n+3}}{\frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)}|x|^{3 n}}=(n+1) \frac{1}{2 n+1}|x|^{3} \rightarrow \frac{1}{2}|x|^{3}
$$

Now, the series converges absolutely when $1 / 2|x|^{3}<1$.

Thus the interval of convergence of our series is $(-\sqrt[3]{2}, \sqrt[3]{2})$ and the radius of convergence is $\sqrt[3]{2}$.
(b) $\quad \sum_{n=1}^{\infty} \frac{7^{n} \sqrt{n^{2}+4}}{\left(n^{4 / 3}+1789\right)^{3}}(x-15)^{n}$

Solution:

Applying the ratio test,

$$
\begin{aligned}
& \frac{7^{n+1} \sqrt{(n+1)^{2}+4}}{\frac{\left((n+1)^{4 / 3}+1789\right)^{3}}{7^{n} \sqrt{n^{2}+4}}} \frac{\left.\mid n^{4 / 3}+1789\right)^{3}}{|x-15|^{n+1}} \\
& =7\left(\frac{n^{4 / 3}+1789}{(n+1)^{4 / 3}+1789}\right)^{3}|x-15| \rightarrow 7|x-15| \\
& \left.\frac{\left(n^{4 / 3}+1789\right)^{3}}{\left((n+1)^{4 / 3}+1789\right)^{3}}\right)|x-15| \\
& \frac{\left((n+1)^{\frac{4}{3}}+1789\right)^{n+1}\left(\sqrt{(n+1)^{2}+4}\right.}{\frac{7^{n}\left(\sqrt{n^{2}+4}\right.}{\left(n^{\frac{4}{3}}+1789\right)^{3}}}|x-15| \rightarrow 7|x-15|
\end{aligned}
$$

Thus the interval of convergence of our series is $\left(15-\frac{1}{7}, 15+\frac{1}{7}\right)$ and the radius of convergence is $\frac{1}{7}$.
12. Without using l'Hôpital's rule, find:

$$
\lim _{x \rightarrow 0} \frac{e^{3 x^{2}}-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{\cos \left(x^{4}\right)-1}
$$

Solution:
Since

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+O\left(x^{5}\right)
$$

it follows that:

$$
\begin{aligned}
& e^{3 x^{2}}=1+\frac{3 x^{2}}{1!}+\frac{\left(3 x^{2}\right)^{2}}{2!}+\frac{\left(3 x^{2}\right)^{3}}{3!}+\frac{\left(3 x^{2}\right)^{4}}{4!}+O\left(x^{10}\right)= \\
& 1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{27 x^{6}}{6}+\frac{81 x^{8}}{24}+O\left(x^{10}\right)= \\
& 1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{9 x^{6}}{2}+\frac{27 x^{8}}{8}+O\left(x^{10}\right)
\end{aligned}
$$

Since

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+O\left(x^{6}\right)
$$

it follows that:

$$
\cos \left(x^{4}\right)=1-\frac{x^{8}}{2!}+O\left(x^{16}\right)
$$

Hence:

$$
\begin{aligned}
& \frac{e^{3 x^{2}}-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{\cos \left(x^{4}\right)-1}= \\
& \frac{1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{9 x^{6}}{2}+\frac{27 x^{8}}{8}+O\left(x^{10}\right)-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{1-\frac{x^{8}}{2!}+O\left(x^{16}\right)-1}= \\
& \frac{27 x^{8}}{\frac{8}{x^{8}}+O\left(x^{10}\right)}+O\left(x^{16}\right) \rightarrow \frac{27}{2!} \\
& \frac{-\frac{1}{2!}}{2!}
\end{aligned}=-\frac{27}{4}, ~ l
$$

13. Let $f(x)=2 e^{\frac{x}{2}}$.
(a) Find $\mathrm{P}_{2}(\mathrm{x})$, the Taylor polynomial for $\mathrm{f}(\mathrm{x})$ of degree 2 centered at $\mathrm{x}=1$.

Solution:

$$
f(1)=2 \sqrt{e} ; \quad f^{\prime}(1)=\sqrt{e} ; \quad f^{\prime \prime}(1)=\frac{1}{2} \sqrt{e}
$$

So $P_{2}(x)=2 \sqrt{e}+\sqrt{e}(x-1)+\frac{1}{2} \sqrt{e}(x-1)^{2}$
(b) Graph the functions $f(x)$ and $P_{2}(x)$ for $0 \leq x \leq 2$ on the same set of axes. Label each function clearly.
(c) Use the polynomial $P_{2}(x)$ that you wrote in part (a) to estimate $f(0.1)$ and $f(1.1)$.

TAYLOR SERIES

The Taylor series of $\mathrm{f}(\mathrm{x})$ centered at $\mathrm{x}=\mathrm{c}$ is $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}$.

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \quad \text { for }|x|<1 \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
& =x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots \quad \text { for all } x \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
& =1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots \quad \text { for all } x \\
& \tan x=\sum_{n=1}^{\infty} \frac{B_{2 n}(-4)^{n}\left(1-4^{n}\right)}{(2 n)!} x^{2 n-1} \\
& =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots \quad \text { for }|x|<\frac{\pi}{2} \\
& \sec x=\sum_{n=0}^{\infty} \frac{(-1)^{n} E_{2 n}}{(2 n)!} x^{2 n} \\
& =1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\cdots \quad \text { for }|x|<\frac{\pi}{2} \\
& \arcsin x=\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}(2 n+1)} x^{2 n+1} \\
& =x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\cdots \quad \text { for }|x| \leq 1 \\
& \arccos x=\frac{\pi}{2}-\arcsin x \\
& =\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}(2 n+1)} x^{2 n+1} \quad=\frac{\pi}{2}-x-\frac{x^{3}}{6}-\frac{3 x^{5}}{40}+\cdots \quad \text { for }|x| \leq 1 \\
& \arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1} \quad=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots \quad \text { for }|x| \leq 1, x \neq \pm i \\
& (x+1)^{-n}=1-n x+\frac{1}{2} n(n+1) x^{2}-\frac{1}{6} n(n+1)(n+2) x^{3}+\ldots . \\
& \begin{aligned}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots \\
& =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{n}}{n} \stackrel{\text { or }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rlr}
\sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} & =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots & \text { for all } x \\
\cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} & =1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots & \text { for all } x \\
\tanh x=\sum_{n=1}^{\infty} \frac{B_{2 n} 4^{n}\left(4^{n}-1\right)}{(2 n)!} x^{2 n-1} & & =x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{17 x^{7}}{315}+\cdots
\end{array} \quad \text { for }|x|<\frac{\pi}{2}
$$

