MATH 162 SOLUTIONS: TEST III

$25^{\text {Tr }}$ APRIL 2018 (revised May 1 ${ }^{\text {st }}$)

Instructions: Answer any 8 of the following 10 problems. You may answer more than 8 to earn extra credit.

1. Write each of the following in the form a + bi. Show your work!
(a) $3(9-4 \mathrm{i})-5(-6-3 \mathrm{i})$

Answer: $57+3 i$
(b) $\quad(3-i)^{3}$

Answer: 18-26i
(c) $\frac{3-5 i}{1+2 i}$

Answer:

$$
\frac{3-5 i}{1+2 i}=\left(\frac{3-5 i}{1+2 i}\right) \frac{(1-2 i)}{(1-2 i)}=\frac{-7-11 i}{5}=-\frac{7}{5}-\frac{11}{5} i
$$

(d) $\mathrm{i}^{1789}+\mathrm{i}^{444}-\mathrm{i}^{9902}$

Solution: $\mathrm{i}^{1789}+\mathrm{i}^{444}-\mathrm{i}^{9902}=\mathrm{i}^{4(447)+1}+\mathrm{i}^{4(111)}-\mathrm{i}^{4(247)+2}=\mathrm{i}+1+1=2+\mathrm{i}$
(e) $e^{\frac{\pi}{4} i}$

Answer: $e^{\frac{\pi}{4} i}=\cos \frac{\pi}{4}+\sin \frac{\pi}{4} i=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$
2. Find the five fifth roots of unity. That is, solve for $\mathrm{z}: ~ \mathrm{z}^{5}=1$. (You may leave your answers in polar form.)

Solution: Let $z^{5}=1 . \quad$ Then $z^{5}=e^{0 \pi i}, e^{2 \pi i}, e^{4 \pi i}, e^{6 \pi i}, e^{8 \pi i}$

Thus $z=1, e^{\frac{2 \pi}{5} i}, e^{\frac{4 \pi}{5} i}, e^{\frac{6 \pi}{5} i}, e^{\frac{8 \pi}{5} i}$
Here is a diagram of the five fifth roots of unity:

3. The base of a solid is a disk of radius 5. Each cross section cut by a plane perpendicular to a given diameter is an isosceles right triangle with hypotenuse on the base. Express the volume of the solid as a Riemann integral. You need not evaluate the integral.

Solution:

The equation of this circle is $x^{2}+y^{2}=25$. Let us assume that the diameter referred to in the question lies on the x-axis. Then, taking a typical slice at x (in the interval [-5,5], with thickness Δx, the volume of the corresponding slice (an isosceles right triangle with hypotenuse $2 y=2 \sqrt{25-x^{2}}$ is given by $\Delta V=1 / 2 \quad y(2 y) \Delta x=\left(25-x^{2}\right) \Delta x$. Thus:

$$
V=\int_{-5}^{5}\left(25-x^{2}\right) d x
$$

Using washers, we obtain (taking advantage of symmetry):

$$
V=2 \int_{0}^{3}\left(\pi(2 x+5)^{2}-\pi 5^{2}\right) d x
$$

4. Let S be the surface of revolution obtained by rotating the curve

$$
y=e^{-2 x^{2}}, \quad 0 \leq x \leq 3
$$

about the line $x=9$. Find a Riemann integral that expresses the surface area of this region. (Do not evaluate the integral.)

$$
S=\int_{x=0}^{3} 2 \pi(9-x) d s=\int_{0}^{3} 2 \pi(9-x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=
$$

$$
\int_{0}^{3} 2 \pi(9-x) \sqrt{1+\left(-4 x e^{-2 x^{2}}\right)^{2}} d x=\int_{0}^{3} 2 \pi(9-x) \sqrt{1+16 x^{2} e^{-4 x^{2}}} d x
$$

5. Consider the triangle with vertices $(0,2),(6,2),(3,4)$. This triangle is rotated about the axis $y=-3$. Express the volume of this solid of revolution as a Riemann integral. Do not evaluate.

Solution:

The equations of the two non-horizontal sides are: $y=(2 / 3) x+2$ and $y=(-2 / 3) x+6$.
Solving for x, we obtain: $x=(3 / 2)(y-2)$ and $x=-(3 / 2)(y-6)$, respectively.
Using shells, the radius of the shell at y is $y-(-3)=y+3$ and the length of the shell is
$-(3 / 2)(y-6)-((3 / 2)(y-2))=12-3 y$. Hence:

$$
V=\int_{2}^{6} 2 \pi(y-(-3))(12-3 y) d y=6 \pi \int_{2}^{6}(y+3)(4-y) d y
$$

6. A conical tank with height 15 meters and radius 5 meters is filled with a fluid of density $\delta \mathrm{kg} / \mathrm{m}^{3}$. How much work must be done to pump all the fluid over the top rim of the tank? Do not evaluate the integral.

Solution:

First note that if y is the height of the slab of fluid that we consider and r is the radius of the top, then

$$
\mathrm{r} / \mathrm{y}=5 / 15=1 / 3
$$

$$
\text { So } \mathrm{r}=\mathrm{y} / 3 \text { and } \mathrm{A}(\mathrm{y})=A(y)=\pi\left(\frac{y}{3}\right)^{2} .
$$

This slab must be lifted $15-\mathrm{y}$ meters. Thus the work done on the totality of slabs is:

$$
W=\int_{0}^{15} \delta g\left(\frac{y}{3}\right)^{2}(15-y) \text { joules }
$$

7. Evaluate $\int \frac{x^{3}+x^{2}+2 x+1}{x^{2}-4 x+3} d x$. Integrate and simplify your answer.

Solution: Performing the long division,

$$
\frac{x^{3}+x^{2}+2 x+1}{x^{2}-4 x+3}=x+5+\frac{19 x-14}{x^{2}-4 x+3}
$$

Next: $\quad \frac{19 x-14}{x^{2}-4 x+3}=\frac{A}{x-3}+\frac{B}{x-1}$
Solving: $A=43 / 2$ and $B=-5 / 2$. Hence

$$
\begin{gathered}
\int \frac{x^{3}+x^{2}+2 x+1}{x^{2}-4 x+3} d x= \\
\int\left(x+5+\frac{43}{2} \frac{1}{x-3}-\frac{5}{2} \frac{1}{x-1}\right) d x= \\
\frac{x^{2}}{2}+5 x+\frac{43}{2} \ln |x-3|-\frac{5}{2} \ln |x-1|+C
\end{gathered}
$$

8. Using an appropriate trigonometric substitution evaluate

$$
\int \frac{\sqrt{x^{2}-1}}{x} d x
$$

Solution: Let $\mathrm{x}=\sec \theta$; then $x^{2}-1=\sec ^{2} \theta-1=\tan ^{2} \theta$ and $d x=\sec \theta \tan \theta d \theta$.

Hence

$$
\int \frac{\sqrt{x^{2}-1}}{x} d x=\int \frac{\sqrt{\sec ^{2} \theta-1}}{\sec \theta} \sec \theta \tan \theta d \theta=\int \frac{\sqrt{\sec ^{2} \theta-1}}{\sec \theta} \sec \theta \tan \theta d \theta=
$$

$$
\begin{gathered}
\int \frac{\tan \theta}{\sec \theta} \sec \theta \tan \theta d \theta=\int \tan ^{2} \theta d \theta=\int\left(\sec ^{2} \theta-1\right) d \theta= \\
\tan \theta-\theta+C=\tan (\operatorname{arcsec} x)-\operatorname{arcsec} x+C= \\
\sqrt{x^{2}-1}-\operatorname{arcsec} x+C
\end{gathered}
$$

9. A population of creatures is placed on a small preservation space. Ten creatures are initially placed on the preservation. The time it takes for such a population to reach C creatures is given by

$$
T(C)=\int_{10}^{C} \frac{20}{x(400-x)} d x
$$

where T is measured in years after the creatures were first placed on the preservation.
(a) Find an explicit function for $\mathrm{T}(\mathrm{C})$ by evaluating the integral given above. Be sure to show your work.

Solution: First we use partial fractions to rewrite the integrand.

$$
\frac{20}{x(400-x)}=\frac{A}{x}+\frac{B}{400-x}=\frac{400 A-A x+B x}{x(400-x)}
$$

This gives us the conditions $A=B=\frac{1}{20}=0.05$. We then have

$$
\begin{aligned}
T(C) & =\frac{1}{20} \int_{10}^{C} \frac{d x}{x}+\frac{1}{20} \int_{10}^{C} \frac{d x}{400-x} \\
& =\left.\frac{1}{20} \ln |x|\right|_{10} ^{C}-\frac{1}{20} \ln |400-x|_{10}^{C} \\
& =\frac{1}{20} \ln |C|-\frac{1}{20} \ln |10|-\frac{1}{20} \ln |400-C|+\frac{1}{20} \ln |390| \\
& =\frac{1}{20} \ln |39|+\frac{1}{20} \ln \left|\frac{C}{400-C}\right|
\end{aligned}
$$

(b) How long does it take the creatures to reach a population of 50? State your answer in a complete sentence and include units in your answer.

Solution:

$$
T(C)=\frac{1}{20} \ln |39|+\frac{1}{20} \ln \left|\frac{50}{350}\right| \approx 0.08588
$$

It takes approximately 0.08588 years (or approximately 1.0306 months) for the population of creatures to reach 50 .
(c) Albertine dreamed that something terrible will happen to the creature population as C approaches 400? Can you reassure her? Explain.

Solution:

$$
\begin{aligned}
T(400) & =\frac{1}{20} \int_{10}^{400} \frac{d x}{x}+\lim _{b \rightarrow 400} \frac{1}{20} \int_{10}^{b} \frac{d x}{400-x} \\
& =\frac{1}{20} \ln |40|+\lim _{b \rightarrow 400}\left(-\frac{1}{20} \ln |400-b|+\frac{1}{20} \ln |390|\right)
\end{aligned}
$$

We know that $\lim _{b \rightarrow 400}\left(-\frac{1}{20} \ln |400-b|\right)$ diverges, so the integral diverges. This means that the time to reach 400 creatures is infinite, so the population will never reach 400 creatures.
10. Evaluate $\int \frac{1}{e^{2 x}-4} d x$. (Caution: This is not a rational function.) Integrate and compute the final answer.

Solution:

$$
\int \frac{1}{e^{2 x}-4} d x=\int \frac{1}{\left(e^{x}-2\right)\left(e^{x}+2\right)} d x
$$

Next let $\mathrm{u}=\mathrm{e}^{\mathrm{x}}$. Then $\mathrm{du}=\mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{udx}$; hence $d u=\frac{1}{u} d x$.

$$
\int \frac{1}{e^{2 x}-4} d x=\int \frac{1}{\left(e^{x}-2\right)\left(e^{x}+2\right)} d x=\int \frac{1}{u(u-2)(u+2)} d u
$$

Using the technique of partial fractions:

$$
\frac{1}{u(u-2)(u+2)}=\frac{A}{u}+\frac{B}{u-2}+\frac{C}{u+2}
$$

So:

$$
1=A(u-2)(u+2)+B u(u+2)+C u(u-2)
$$

Solving for A, B, C we obtain:
$\mathrm{A}=-1 / 4 ; \quad \mathrm{B}=1 / 8 ; \quad \mathrm{C}=1 / 8$
Hence

$$
\begin{gathered}
\int \frac{1}{u(u-2)(u+2)} d u=\int\left(\frac{\frac{1}{4}}{u}+\frac{\frac{1}{8}}{u-2}+\frac{\frac{1}{8}}{u+2}\right) d u= \\
\frac{1}{4} \ln |u|+\frac{1}{8} \ln |u-2|+\frac{1}{8} \ln |u+2|+\mathrm{C}
\end{gathered}
$$

Finally: $\int \frac{1}{e^{2 x}-4} d x=\frac{1}{4} \ln e^{x}+\frac{1}{8} \ln \left|e^{x}-2\right|+\frac{1}{8} \ln \left|e^{x}+2\right|+C=$

$$
\frac{x}{4}+\frac{1}{8} \ln \left|e^{x}-2\right|+\frac{1}{8} \ln \left|e^{x}+2\right|+C
$$

