MATH 162: HOMEWORK E

1. Albertine is trying to find all solutions to the equation. She needs your help!

$$1 - \frac{(3x)^2}{2!} + \frac{(3x)^4}{4!} - \frac{(3x)^6}{6!} + \dots = 0.$$

You must show your work clearly and give exact answers. Calculator approximations or methods will receive no credit.

2. Let a_n and b_n be the two sequences shown in the figure below. The sequence $a_n = \frac{1}{n}$ is shown with solid dots \bullet and the sequence b_n is shown with crosses **X**. For $5 \le n < \infty$, $0 < b_n < a_n$,

- (a) Does the sequence b_n converge, diverge, or can we not tell? Explain each answer in one or two complete sentences. If the sequence converges, indicate the value to which it converges.
- (b) Does the series $\sum_{n=1}^{\infty} b_n$ converge, diverge, or can we not tell? Explain in one or two complete sentences. If the series converges, indicate the value to which it converges.
- 3. Suppose that we know that $\sum_{n=1}^{\infty} a_n$ converges --- but we don't know what a_n is. For each of the series below, determine whether the series converges, diverges, or we cannot tell (that is, there could be one sequence $\{a_n\}$ for which the series converges and another for which the series diverges.
 - (a) $\sum_{n=1}^{\infty} |a_n| \sum_{n=1}^{\infty} \frac{a_n}{n^2}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n |a_n|$
 - (c) $\sum_{n=1}^{\infty} \frac{a_n + 1}{a_n + 5}$
 - (d) $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$
 - (e) $\sum_{n=1}^{\infty} \frac{3^n a_n}{n^3}$

4. Albertine, Gilberte, and Swann are obsessed by the following problem. Please help them solve this problem.

$$\lim_{n \to \infty} I_n, \text{ where } I_1 = \int_0^1 \frac{dx}{1 + \sqrt{x}}, \quad I_2 = \int_0^1 \frac{dx}{1 + \frac{1}{1 + \sqrt{x}}}, \quad I_3 = \int_0^1 \frac{dx}{1 + \frac{1}{1 + \frac{1}{1 + \sqrt{x}}}}, \quad \dots$$

