MATH 162: HOMEWORK E

1. Albertine is trying to find all solutions to the equation. She needs your help!

$$
1-\frac{(3 x)^{2}}{2!}+\frac{(3 x)^{4}}{4!}-\frac{(3 x)^{6}}{6!}+\cdots=0
$$

You must show your work clearly and give exact answers. Calculator approximations or methods will receive no credit.
2. Let a_{n} and b_{n} be the two sequences shown in the figure below. The sequence $a_{n}=\frac{1}{n}$ is shown with solid dots \bullet and the sequence b_{n} is shown with crosses \mathbf{X}. For $5 \leq n<\infty, 0<b_{n}<a_{n}$,

(a) Does the sequence b_{n} converge, diverge, or can we not tell? Explain each answer in one or two complete sentences. If the sequence converges, indicate the value to which it converges.
(b) Does the series $\sum_{n=1}^{\infty} b_{n}$ converge, diverge, or can we not tell? Explain in one or two complete sentences. If the series converges, indicate the value to which it converges.
3. Suppose that we know that $\sum_{n=1}^{\infty} a_{n}$ converges --- but we don't know what a_{n} is. For each of the series below, determine whether the series converges, diverges, or we cannot tell (that is, there could be one sequence $\left\{a_{n}\right\}$ for which the series converges and another for which the series diverges.
(a) $\quad \sum_{n=1}^{\infty}\left|a_{n}\right| \sum_{n=1}^{\infty} \frac{a_{n}}{n^{2}}$
(b) $\quad \sum_{n=1}^{\infty}(-1)^{n}\left|a_{n}\right|$
(c) $\quad \sum_{n=1}^{\infty} \frac{a_{n}+1}{a_{n}+5}$
(d) $\quad \sum_{n=1}^{\infty} \frac{a_{n}}{n^{2}}$
(e) $\quad \sum_{n=1}^{\infty} \frac{3^{n} a_{n}}{n^{3}}$
4. Albertine, Gilberte, and Swann are obsessed by the following problem. Please help them solve this problem.
$\lim _{n \rightarrow \infty} I_{n}$, where $I_{1}=\int_{0}^{1} \frac{d x}{1+\sqrt{x}}, \quad I_{2}=\int_{0}^{1} \frac{d x}{1+\frac{1}{1+\sqrt{x}}}, \quad I_{3}=\int_{0}^{1} \frac{d x}{1+\frac{1}{1+\frac{1}{1+\sqrt{x}}}}$,

"GROMEK + LAS DISCOVERED THE FIRST
RETREATING INFINITE SERIES. "

