DISCUSSION TOPICS \& EXERCISES

22 January 2018

Part I: Rates of growth: little σ and big O notation

Suppose that $\mathrm{f}(\mathrm{x}) \rightarrow \infty$ and $\mathrm{g}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$. We say that " f is of smaller order than g " if $\frac{f(x)}{g(x)} \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$. In this case we write $\mathrm{f}=o(\mathrm{~g})$.

Assume that f and g are each positive for large x. We say that " f is at most the order of g " if there is a positive integer M for which $\frac{f(x)}{g(x)} \leq M$ for large x . In this case we write $\mathrm{f}=O(\mathrm{~g})$.

Growth rate of functions (SF University, CS Dept)

Growth-rate Functions

- $O(1)$ - constant time, the time is independent of $\mid n$, e.g. array look-up
- $\mathrm{O}(\log n)$ - logarithmic time, usually the log is base 2, e.g. binary search
- $\mathrm{O}(n)$ - linear time, e.g. linear search
- O($\left.n^{*} \log n\right)$ - e.g. efficient sorting algorithms
- $\mathrm{O}\left(n^{2}\right)$ - quadratic time, e.g. selection sort
- $\mathrm{O}\left(\mathrm{n}^{k}\right)$ - polynomial (where k is some constant)
- $\mathrm{O}\left(2^{\mathrm{n}}\right)$ - exponential time, very slow!
- Order of growth of some common functions $\mathrm{O}(1)<\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)<\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{n}\right)$

Order-of-Magnitude Analysis and Big O Notation

(a)

Function	10	100	1,000	10,000	100,000	$1,000,000$
1	1	1	1	1	1	1
$\log _{2} n$	3	6	9	13	16	19
n	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}
$n * \log _{2} n$	30	664	9,965	10^{5}	10^{6}	10^{7}
n^{2}	10^{2}	10^{4}	10^{6}	10^{8}	10^{10}	10^{12}
n^{3}	10^{3}	10^{6}	10^{9}	10^{12}	10^{15}	10^{18}
2^{n}	10^{3}	10^{30}	10^{301}	$10^{3,010}$	$10^{30,103}$	$10^{301,030}$

A comparison of growth-rate functions: a) in tabular form

Order-of-Magnitude Analysis and Big O Notation

A comparison of growth-rate functions: b) in graphical form

Arithmetic of Big-O Notation

1) If $f(n)$ is $O(g(n))$ then $c . f(n)$ is $O(g(n))$, where c is a constant.

- Example: $23^{*} \log n$ is $\mathrm{O}(\log n)$

2) If $f_{1}(n)$ is $O(g(n))$ and $f_{2}(n)$ is $O(g(n))$ then also $f_{1}(n)+f_{2}(n)$ is $O(g(n))$

- Example: what is order of $n^{2}+n$?
n^{2} is $O\left(n^{2}\right)$
n is $O(n)$ but also $O\left(n^{2}\right)$ therefore $\mathrm{n}^{2}+\mathrm{n}$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

EXERCISES:

Determine which of the following statements are true; justify each answer.
(a) $3 \mathrm{x}^{2}+11=o\left(\mathrm{x}^{5}+\mathrm{x}+99\right)$
(b) $\mathrm{x}+5 \sin \mathrm{x}=O(\mathrm{x})$
(c) $2^{\mathrm{x}}=o\left(\mathrm{x}^{100}\right)$
(d) $3^{\mathrm{x}}=O\left(\mathrm{e}^{\mathrm{x}}\right)$
(e) $\mathrm{x}=o(\ln \mathrm{x})$
(f) $3+\ln x+\ln (\ln x)+\sqrt{x}=o\left(x^{\frac{2}{3}}\right)$
(g) $\quad \ln x=o(\sqrt{x})$
(h) $\quad\left(x^{2}+1\right)^{4}=O\left((2 x+1)^{3} x^{5}\right)$
(i) $\frac{x^{2}+13 x+2009}{5 x+1789}=O\left(\sqrt{x^{2}+9}\right)$
(j) $\ln \mathrm{x}=o(\ln (\ln \mathrm{x}))$
(k) $\ln \left(\mathrm{x}^{55}+\mathrm{x}^{33}+\mathrm{x}^{11}+1\right)=O(\ln \mathrm{x})$

```
* 7n-2
7n-2 is O(n)
need c>0 and nb '1 such that 7n-2£c*n for n ' }\mp@subsup{}{}{3}\mp@subsup{n}{0}{
this is true for }\textrm{C}=7\mathrm{ and }\mp@subsup{\textrm{r}}{0}{}=
- 3n}\mp@subsup{}{}{3}+20\mp@subsup{n}{}{2}+
3n}+20\mp@subsup{n}{}{2}+5\mathrm{ is O(n3)
need c>0 and \mp@subsup{\eta}{0}{}\mp@subsup{}{}{3}1\mathrm{ such that 3n+ +20n+2}+5£c\cdot\mp@subsup{n}{}{3}\mathrm{ for n }\mp@subsup{}{}{3}\mp@subsup{n}{0}{}
this is true for c=4 and no m 
- 3 logn + log logn
    3 logn+log logn is O(logn)
    need c>0 and rob ' 1 such that 3 logn n log logn £c* logn for n }\mp@subsup{}{}{3}\mp@subsup{n}{0}{
    this is true for c=4 and }\mp@subsup{\textrm{n}}{\textrm{b}}{=2

\section*{Exercise (Purdue University)}

Arrange the following list of functions in ascending order of growth rate, i.e. if function \(g(n)\) immediately follows \(f(n)\) in your list then, it should be the case that \(f(n)=\) \(O(g(n))\).
\[
\begin{gathered}
g_{1}(n)=2^{\sqrt{\log n}} \\
g_{2}(n)=2^{n} \\
g_{3}(n)=n^{4 / 3} \\
g_{4}(n)=n(\log n)^{3} \\
g_{5}(n)=n^{\log n} \\
g_{6}(n)=2^{2^{n}} \\
g_{7}(n)=2^{n^{2}}
\end{gathered}
\]


\section*{PART II: REDUCTION FORMULAE}
1. Find a reduction formula for \(\int x^{n} e^{x} d x\)
2. Find a reduction formula for \(\int(\ln x)^{n} d x\)

More challenging practice:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Integral } & \\
\hline\(I_{n}=\int \frac{x^{n}}{\sqrt{a x+b}} \mathrm{~d} x\) & \(I_{n}=\frac{2 x^{n} \sqrt{a x+b}}{a(2 n+1)}-\frac{2 n b}{a(2 n+1)} I_{n-1}\) \\
\hline\(I_{n}=\int \frac{\mathrm{d} x}{x^{n} \sqrt{a x+b}}\) & \(I_{n}=-\frac{\sqrt{a x+b}}{(n-1) b x^{n-1}}-\frac{a(2 n-3)}{2 b(n-1)} I_{n-1}\) \\
\hline\(I_{n}=\int x^{n} \sqrt{a x+b} \mathrm{~d} x\) & \(I_{n}=\frac{2 x^{n} \sqrt{(a x+b)^{3}}}{a(2 n+3)}-\frac{2 n b}{a(2 n+3)} I_{n-1}\) \\
\hline
\end{tabular}```

