Handout 1 August 25, 2015

What constitutes a definition?

For example, let p and q be integers. We say that \boldsymbol{p} is divisible by q if: ?

Let n be an integer. We define n to be even if: ?
We define n to be odd if: ?
We define an integer $\mathrm{n} \geq 2$ to be a prime number if:
What about the following "definitions"?
(a) Define a function f on the real line as follows: $f(x)=\left\{\begin{array}{l}8 x \text { if } x \text { is a positive real } \\ 9 x-13 \text { if } x \text { is a negative real }\end{array}\right.$
(b) Define a function g on the real line as follows: $g(x)=\left\{\begin{array}{l}8 / x \text { if } x \text { is a positive real } \\ x^{3} \text { otherwise }\end{array}\right.$

What constitutes a proof?

Proposition: If an integer n is divisible by 8 , then n must be even.
"Proof" 1: If a number is divisible by 8 , that means 8 goes into it without remainder. Since 2 goes into 8 without a remainder, that means that 2 goes into the original number without a remainder.
"Proof" 2: If a number is divisible by 8 , it has to be equal to 8 times some other number. But since 8 is even, if you take any number and multiply it by 8 , you get an even number, so the original number is even.
"Proof" 3: If n is divisible by 8 , then there is some number d such that $n=8 d$. But since 8 is even, 8 d is even, so n is even.
"Proof" 4: Let n be an integer that is divisible by 8 . Then there exists an integer d such that $\mathrm{n}=8 \mathrm{~d}$. So $n=2(4 d)$ and $4 d$ is an integer. Hence $n=2 m$ where m is an integer, and so n is even.

What is a conjecture? For example: Observe that $24=5+19=7+17=11+13$
$8=3+5$
$38=19+19=7+31$

Can you formulate a conjecture from the above examples?

