Homework Solutions: Problem set 1 (section 1.4 of text)

4. Prove that the sum of two odd numbers n_{1} and $\mathrm{n}_{\mathbf{2}}$ is even.

Proof: Let n_{1} and n_{2} be odd integers. Then (by definition of odd integer) there exist integers a and b such that

$$
\mathrm{n}_{1}=2 \mathrm{a}+1 \text { and } \mathrm{n}_{2}=2 \mathrm{~b}+1
$$

Now: $n_{1}+n_{2}=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$.

Next, note that $q=a+b+1$ is an integer (since Z is closed under addition).

Thus $n_{1}+n_{2}=2 q$ which is even (by definition of even integer).
9. Scary Clown offers a Sad Meal containing a sandwich, a salad, a dessert, and a drink. (They are not mixed together in the box.) There are 11 types of sandwiches, 3 types of salads, and 5 different kinds of desserts. A person with low standards for food could eat a different Sad Meal every day for three years. So how many drinks are possible choices for a Sad Meal?

Solution: Let $A=$ set of the types of sandwiches that are available. Then $|A|=11$.
Let $B=$ set of the types of salads that are available. Then $|B|=3$.
Let $C=$ set of the types of desserts that are available. Then $|C|=5$.
Let $x=$ number of different types of drinks that must be made available to our customer with low standards.

Using the Multiplication Principle, the number of Sad Meals available is:
$|A||B||C| x=(11)(3)(5) x$
Now in three years there are at most $(365+365+366)=1096$ days.
Thus we need the number of unique Sad Meals to be at least 1096:

$$
(11)(3)(5) x \geq 1096
$$

From this we see that $x \geq 1096 /\{(11)(3)(5)\}=6.64$.
Now since x must be an integer, we must choose $x=7$ (or larger) to satisfy our customers' requirements.
12. Prove, or find a counterexample to: the sum of two perfect squares is even.

Counterexample: Clearly $3^{2}=9$ and $4^{2}=16$ are perfect squares. But $9+16=25=2(12)+1$ which is odd.

