Solutions: Homework 3 (section 2.2 of text)

11. Give a counterexample to the statement $|A \cup B|=|A|+|B|$.

Solution: Let $\mathrm{A}=\mathrm{B}=\{0,1\}$. Then $A \cup B=\{0,1\}$. Now $|\mathrm{A}|=2,|\mathrm{~B}|=2$, and $|A \cup B|=2$.
Clearly $2=|A \cup B| \neq|A|+|B|=4$.
14. Decide whether or not it is true that $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$

Solution: This is False. (Almost any choice of A, B, C, D will serve you well.)
Let $A=C=\varnothing$, the empty set and $B=D=\{1\}$.
Then $A \times B=\emptyset, C \times D=\emptyset, A \cup C=\emptyset$, and $B \cup D=\{1\}$.
Thus $(A \times B) \cup(C \times D)=\emptyset$, yet $(A \cup C) \cup(B \cup D)=\{1\}$.

Note: Perhaps an easier way to view this is by letting $A=B=[0,1]$ and $C=D=[1,2]$, two intervals on the real line. (We know this is not a discrete set, but it works nonetheless.)

Then $A \times B$ is a square in the plane; so is $C \times D$. But the union of these two squares is not a square, whereas the right-hand side of our set equality above is a square of side length 4. (Draw a picture!)
18. Write this in English: $\forall k \in 3 \mathbb{Z}, \exists S \subseteq \mathbb{N},|S|=k$. (Is it true?) What is the negation of this statement? (Is the negation true?)

Solution: For every integer, k, divisible by 3 , there exists a set of k counting numbers.
This is not a true statement: just let $k=-3$.
The negation says: There exists an integer, k, divisible by 3 , such that no set of k counting numbers exists.

As a logical sentence, this negation is: $\exists k \in \mathbb{Z}, \forall S \subseteq \mathbb{N},|S| \neq k$.
Clearly this is a true statement since it is the negation of a false statement.

