\qquad group: \qquad

1. Define: even number; odd number
2. Prove that if n is odd then so is n^{2}.
3. Consider the expression $n^{2}+n-5$, where n is an integer. Compute its values for $n=1,2,3,4,5$. Can you make a conjecture? Can you prove your conjecture?
4. Can you guess a formula for $1+2+3+\ldots+n$, where n is a positive integer. Explain how you arrived at this guess.
5. Consider the following problem:

Into how many regions do n lines divide the plane? (Here n is a non-negative integer.)
(a) Why is this question ambiguous?
(b) Modify this statement so that it is unambiguous.
(c) What is the answer when $\mathrm{n}=1$? $\mathrm{n}=2$? $\mathrm{n}=3$?
(d) What about $\mathrm{n}=4$?
(e) $\operatorname{Try} \mathrm{n}=5$.
(f) What is your guess for $\mathrm{n}=6$? Can you discern a pattern?
(g) Analyzing this pattern, can you find a general formula?
6. Carefully state the Product Principle for two finite sets.
7. Carefully state the Addition Principle for two finite sets. (Be careful here.)

