PROBLEM SET 11: RECURRENCE RELATIONS

Let F_{n} be the $\mathrm{n}^{\text {th }}$ Fibonacci number. (Let us assume that $\mathrm{F}_{1}=\mathrm{F}_{2}=1$.)

1. Using induction prove that, for all $\mathrm{n} \in \mathrm{N}, 1+\sum_{k=1}^{n} F_{k}=F_{n+2}$ 2. Using induction prove that, for all $\mathrm{n} \in \mathrm{N}, F_{n-1} F_{n+1}=\left(F_{n}\right)^{2}+(-1)^{n}$
2. Find a formula for the sum of the first n odd-index Fibonacci numbers ($\mathrm{F}_{1}, \mathrm{~F}_{3}, \mathrm{~F}_{5}, \ldots$). Prove your conjecture.
3. Find a formula for the sum of the first n even-index Fibonacci numbers ($\mathrm{F}_{2}, \mathrm{~F}_{4}, \ldots$). Prove your conjecture.
4. Prove that $F_{n+3}=2 F_{n+1}+F_{2} F_{n}$
5. Find a recurrence formula that defines the sequence $2,5,8,11,14, \ldots$
6. Find a closed form expression for each of the following sequences:
(a) $1,-3,9,-27,81, \ldots$
(b) $-6,-1,4,9,14, \ldots$
(c) $1,8,27,64,125, \ldots$
7. Find a closed form expression for the sequence: $a_{0}=8, a_{n}=a_{n-1}-4$

Fibonacci spiral

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.

- Leohard Euler (1707-1783)

