PROBLEM SET 13: EXTENDED GCD, FERMAT'S LITTLE THEOREM

1. Let a and b be integers, not both 0 . Define $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.
2. Find $\operatorname{gcd}(2584,1597)$
3. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-k b, b)$ for any integer, k.
4. Using the extended Euclidean algorithm, find integers x and y such that $\mathrm{ax}+\mathrm{by}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ when:
(A) $\mathrm{a}=34, \mathrm{~b}=459$
(B) $\mathrm{a}=272, \mathrm{~b}=4356$
(C) $\mathrm{a}=156 \mathrm{~b}=572$
5. Using the extended Euclidean algorithm, find integers x and y such that $3789406027 x+18272779829 y=\operatorname{gcd}(37894060279,18272779829)$. Of course, the calculation below is of great help.

$$
\begin{aligned}
37894060279 & =2 \times 18272779829+1348500621 \\
18272779829 & =13 \times 1348500621+742271756 \\
1348500621 & =1 \times 742271756+606228865 \\
742271756 & =1 \times 606228865+136042891 \\
606228865 & =4 \times 136042891+62057301 \\
136042891 & =2 \times 62057301+11928289 \\
62057301 & =5 \times 11928289+2415856 \\
11928289 & =4 \times 2415856+2264865 \\
2415856 & =1 \times 2264865+150991 \\
2264865 & =15 \times \underline{150991}+0
\end{aligned}
$$

2. State the well-ordering principle.
3. State and prove the division algorithm.
4. Let a and b be integers, not both 0 . Prove that there exist integers x and y such that $\mathrm{ax}+\mathrm{by}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$
5. Give Euclid's proof that there exist infinitely many primes.
6. Prove Pythagoras' theorem that $\sqrt{2}$ is irrational.
7. Prove that a and b are relatively prime if and only if there exist integers x, y for which $\mathrm{ax}+\mathrm{by}=1$.
8. Euclid's lemma: Prove that if c divides ab and c is prime then c divides a or c divides b .
Is this statement still true if one removes the hypothesis that c is prime? What if one assumes that $\operatorname{gcd}(b, c)=1$?
9. State Fermat's theorem.
10. Using Fermat's theorem show that 17 is a divisor of $11^{104}+1$.
11. State the Fundamental Theorem of Arithmetic.
12. Given non-zero integer a, prove that $\operatorname{gcd}(a, a+1)=1$

Course Home Page Department Home Page Loyola Home Page

