Problem set 14:  fermat’s little theorem 

1. Review: Prove that gcd(a, b) = gcd(a – kb, b) for any integer, k.
1. Review:  Let a and b be integers, not both 0.   Prove that there exist integers x and y such that ax + by = gcd(a, b).
1. Find integers x and y such that ax + by = gcd(7777, 3234).
1. Let a and b be integers, not both 0.   Prove that 
{ax + bx| a, b Z, ax + by >0} = {k gcd{a, b}| k Z}
1. Does the Diophantine equation 77721x + 17078y = 4 have a solution?  If so, find one; if not, explain why.
1. Give Euclid’s proof that there exist infinitely many primes.
(a)  is irrational
(b)    is irrational
(c)     is irrational

1. State the Fundamental Theorem of Arithmetic.
1. Prove that a and b are relatively prime if and only if there exist integers x, y for which 
ax + by = 1.
1.  Euclid’s lemma:  Prove that if q divides ab and q is prime then either q divides a or 
q divides b.  
Is this statement still true if one removes the hypothesis that q be prime?
What if one assumes that gcd(b, q) = 1 ?
1.  Prove the following division rule for modular arithmetic:  If ca  cb (mod n) and 
gcd(c, n) = 1, then a  b (mod n).
1. More generally, prove that if ca  cb (mod n) then a  b (mod n/d), where 
d = gcd(a, b).
1. State and prove Fermat’s little theorem.
1. Using Fermat’s theorem show that 17 is a divisor of 11104 + 1.
1.  Using Fermat’s little theorem, compute 331 (mod 7), 2925 (mod 11), and 
128129 (mod 17).

1.  Let k = 20082 + 22008.   What is the units digit of k2 + 2k ?  (hint:  think mod 10)
(a) 0              (b)  2            (c) 4              (d)  6                (e) 8

1. Find 220 + 330 + 440 + 550 + 660 (mod 7)

Supplement:  
(from Art of Problem Solving) 
[bookmark: _GoBack]We are particularly interested in Proof 2 (Inverses).
[image: ]
[image: ]

 [image: ]


[image: ]


[image: http://s2.lemde.fr/image/2013/05/14/534x0/3198804_5_1316_timbre-francais-a-l-effigie-de-pierre-de_c14c113f0f0d0d5d903ad0e4aff4c481.jpg]

image1.png
Statement

Ifais an integer, pis a prime number and a is not divisible by p, thena”~' =1 (mod p).

A frequently used corollary of Fermat's Litile Theorem is a” = a (mod p). As you can se, itis derived by multipiing both sides of the theorem by a.
The restated form s nice because we no longer need to restrict ourselves to integers a not divisible by p.

This theorem is a special case of Euler's Totient Theorem, which states that if a and n are integers, then a*™ =1 (mod n), where ¢(n) denotes
Euler's totient function. In particular, ¢(p) = p — 1 for prime numbers p. In turn, this is a special case of Lagrange's Theorem.

In contest problems, Fermat's Little Theorem is often used in conjunction with the Chinese Remainder Theorem to simplify tedious calculations.
Proof

We offer several proofs using different techniques to prove the statement a” = a (mod p). If ged (a,p) = 1, then we can cancel a factor of a from
both sides and retrieve the first version of the theorem.

Proof 1 (Induction)

The most straightforward way to prove this theorem is by by applying the induction principle. We fix p as a prime number. The base case,
17 (mod p), is obviously true. Suppose the statement a” = a (mod p) s true. Then, by the binomial theorem,

(a+ 1P =a+ (f)ww (Z)a”’*+---+ (pﬁl)"“'

Note that p divides into any binomial coefficient of the form (:) for 1 < k < p — 1. This follows by the definition of the binomial coefficient as

!
P) = P qince pis prime, then p divides the numerator, but not the denominator.
k) = Kp—k)!

Taken mod p, all of the middle terms disappear, and we end up with (a + 1)7
then (@ + 1) = a+ 1 (mod p), as desired.

a” +1 (mod p). Since we also know that a” = a (mod p),
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Proof 2 (Inverses)

LetS = {1,2,3,--- ,p — 1}. Then, we claim that the set a - S, consisting of the product of the elements of S with a, taken modulo p, is simply a
permutation of S. In other words,

S={1a,2a,---,(p—1)a} (mod p).

Clearly none of the éa for 1 < ¢ < p — 1 are divisible by p, so it suffices to show that all of the elements in a. - S are distinct. Suppose that
ai j (mod p)fori # j. Since ged (a,p) = 1, by the cancellation rule, that reduces toi = j (mod p), which is a contradiction.

Thus, mod p, we have that the product of the elements of S'is

la-2---(p-1)a=1-2--(p—1) (mod p).

Cancelling the factors 1,2, 3, ..., p — 1 from both sides, we are left with the statement a”~* = 1 (mod p).

A similar version can be used to prove Euler's Totient Theorem, if we let S = {natural numbers relatively prime to and less than n}
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Proof 3 (Combinatorics)
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Anillustration of the case p = 3,a = 2.

Consider anecklace with p beads, each bead of which can be colored in a different ways. There are a” ways to pick the colors of the beads. a of
these are necklaces that consists of beads of the same color. Of the remaining necklaces, for each necklace, there are exactly p — 1 more necklaces
that are rotationally equivalent to this necklace. It follows that a” — a must be divisible by p. Written in another way, a” = a (mod p)
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Proof 4 (Geometry)

Forp = 2,3and a = 6,4, respectively

We imbed a hypercube of side length a in R” (the p-th dimensional Euclidean space), such that the vertices of the hypercube are at
(+a/2,+a/2,...,+a/2). Ahypercube is essentially a cube, generalized to higher dimensions. This hypercube consists of a” separate unit
hypercubes, with centers consisting of the points

1 1 1
P(21,32,... @) = (a+§—m,,a+5—m1.“ua+E—.x'y).

where each z; is an integer from 1 to a. Besides the a centers of the unit hypercubes in the main diagonal (from (—a/2, —a/2, ..., —a/2)to
(a/2,a/2,...,a/2)) the transformation carrying

P(@1,@2, . ,0) > Pl a0y, 1)

maps one unit hypercube to a distinct hypercube. Much like the combinatorial proof, this spitts the non-main diagonal unit hypercubes into groups of
size p, from which it follows that a” = a (mod p). Thus, we have another way to visualize the above combinatorial proof, by imagining the described
transformation to be, in a sense, a rotation about the main diagonal of the hypercube.
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