Math 201: problem set VI

Isomorphism

1. Let X be a set endowed with operation \star and let Y be a set endowed with operation \&. (It is assumed, of course, that each set is closed under its own operation).
(Sometimes X and Y will have multiple operations.)

An isomorphism is a bijection $\Phi: X \rightarrow Y$ that preserves operations.
More precisely: For all x_{1} and $\mathrm{x}_{2} \in \mathrm{X}, \Phi\left(\mathrm{x}_{1} \star \mathrm{x}_{2}\right)=\Phi\left(\mathrm{x}_{1}\right) \& \Phi\left(\mathrm{x}_{2}\right)$.
For example, let X be the space of 2×1 (column) vectors with real entries, endowed with the usual matrix addition. Let Y be the space of 1×2 (row) vectors, also endowed with the usual matrix addition.
Define $\Phi\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=\left[\begin{array}{ll}a & b\end{array}\right]$

Prove that Φ is an isomorphism.
2. Consider the following function $\Phi: Z \rightarrow Z$ defined by the rule, for all $a \in Z, \Phi(a)=a+1$.

Assume that operation on Z is addition in both the domain and target.
(1) Is Φ well-defined?
(2) Is Φ surjective?
(3) Is Φ injective?
(4) Is Φ bijective?
(5) Is Φ an isomorphism?

Investigate each of the following functions by going through the list of five questions in \#2.
3. Let X be the space of all polynomials with real coefficents.

Let X and Y have one operation: polynomial addition.
Define $F: X \rightarrow Y$ by the following rule: for all $p \in X, F(p)=F^{\prime}$
4. Are the following two graphs isomorphic?

5. Let X be the set of polynomials of degree 2 or smaller with real coefficients, endowed with the usual addition of polynomials. Let Y be the set of 3×1 column vectors, endowed with the usual matrix addition. Define $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{Y}$ as follows: For all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R} \quad \mathrm{G}\left(\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\right)=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.
6. Let X and Y each be the set of complex numbers endowed with the usual addition and multiplication. Note, here each set has two operations.
Define $H: X \rightarrow Y$ as follows: For all $z \in X H(z)=$ conjugate of z.
7. Let X be the set of real numbers endowed with the usual addition. Let Y be the set of all nonnegative real numbers endowed with the usual multiplication.
Define $T: X \rightarrow Y$ as follows: For all $s \in X \quad T(s)=2^{s}$.
8. Are the following two graphs isomorphic?

11. Are the following two graphs isomorphic?

The origins of graph theory are humble, even frivolous.

- N. Biggs, E. K. Lloyd, and R. J. Wilson (Graph Theory: 1736-1937)

