Math 201: problem set VI

Isomorphism

 Let X be a set endowed with operation ★ and let Y be a set endowed with operation ♣. (It is assumed, of course, that each set is closed under its own operation). (Sometimes X and Y will have multiple operations.)

An isomorphism is a bijection $\Phi: X \rightarrow Y$ that preserves operations. More precisely: For all x_1 and $x_2 \in X$, $\Phi(x_1 \bigstar x_2) = \Phi(x_1) \clubsuit \Phi(x_2)$. For example, let X be the space of 2×1 (column) vectors with real entries, endowed with the usual matrix addition. Let Y be the space of 1×2 (row) vectors, also endowed with the usual matrix addition.

Define
$$\Phi\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a & b\end{bmatrix}$$

Prove that Φ is an isomorphism.

- 2. Consider the following function $\Phi: \mathbb{Z} \to \mathbb{Z}$ defined by the rule, for all $a \in \mathbb{Z}$, $\Phi(a) = a + 1$. Assume that operation on Z is addition in both the domain and target.
 - (1) Is Φ well-defined?
 - (2) Is Φ surjective?
 - (3) Is Φ injective?
 - (4) Is Φ bijective?
 - (5) Is Φ an isomorphism?

Investigate each of the following functions by going through the list of five questions in #2.

- Let X be the space of all polynomials with real coefficents. Let X and Y have one operation: polynomial addition. Define F: X → Y by the following rule: for all p ∈ X, F(p) = F'
- 4. Are the following two graphs isomorphic?

5. Let X be the set of polynomials of degree 2 or smaller with real coefficients, endowed with the usual addition of polynomials. Let Y be the set of 3×1 column vectors, endowed with the usual

matrix addition. Define G: $X \rightarrow Y$ as follows: For all a, b, $c \in \mathbb{R}$ G(a + bx + cx²) = $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

- 6. Let X and Y each be the set of complex numbers endowed with the usual addition and multiplication. Note, here each set has two operations.
 Define H: X → Y as follows: For all z∈X H(z) = conjugate of z.
- Let X be the set of real numbers endowed with the usual addition. Let Y be the set of all non-negative real numbers endowed with the usual multiplication.
 Define T: X → Y as follows: For all s∈X T(s) = 2^s.
- 8. Are the following two graphs isomorphic?

11. Are the following two graphs isomorphic?

The origins of graph theory are humble, even frivolous.

- N. Biggs, E. K. Lloyd, and R. J. Wilson (Graph Theory: 1736-1937)