Math 201: problem set VII

Mathematical Induction

1. What is the flaw in the "induction proof" that: given n spiders, if one is a tarantula, then all the spiders are tarantulas?
2. Review the argument that for all natural numbers n, any $2^{n} \times 2^{n}$ chessboard with one square removed can be tiled by tri-ominos. Try to explain it to another member of your group!
3. Prove independently (of question \#2) that 3 is a divisor of $2^{2 n}-1$.

II Using the method of mathematical induction, verify each of the following:

1. $3 \mid\left(n^{3}+2 n\right)$ for all natural numbers n. (recall the notation: a|b means that b is a multiple of a)
2. $5 \mid\left(7^{n}-2^{n}\right)$ for all natural numbers n.
3. $1+3+5+\ldots+(2 n-1)=n^{2}$ for all natural numbers n.
4. $(1+x)^{n} \geq 1+n x$ for all real $x \geq 0$ and all natural numbers n. (This is called Bernoulli's inequality.)
5. $1+2+3+\ldots+n=n(n+1) / 2$ for all natural numbers n.
6. $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$ for all natural numbers n.
7. $2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-2$ for all natural numbers n.
8. $4 \mathrm{n}<2^{\mathrm{n}}$ for all natural numbers $\mathrm{n} \geq 5$.
9. $(1)(2)+(2)(3)+(3)(4)+\ldots+(n)(n+1)=n(n+1)(n+2) / 3$ for all natural numbers n.
10. $2^{n}>n^{2}$ for all natural numbers $\mathrm{n} \geq 5$.
11. $13 \mid\left(8^{2^{n}}-5^{2^{n}}\right)$ for all natural numbers n.
12. Consider the sequence $\left\{a_{n}\right\}$ of Fibonacci numbers defined recursively by

$$
\begin{gathered}
a_{1}=a_{2}=1, \text { and } \\
a_{n+2}=a_{n}+a_{n+1} \text { for all } n \geq 1
\end{gathered}
$$

Prove that $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=1$ for all natural numbers n.
13. $133 \mid\left(12^{2 n}-11^{n}\right)$ for all non-negative integers n.
14. (d/dx) $x^{n}=n x^{n-1}$ for all natural numbers n. (You may use the product rule.)
15. Prove that, for all natural numbers n, any $2^{n} \times 2^{n}$ chessboard with one square removed can be tiled by tri-ominos. Prove independently that 3 is a divisor of $2^{2 n}-1$

III State the Principle of Strong Induction.

1. Using strong induction prove that every integer $\mathrm{n} \geq 2$ can be expressed as a product of primes.
2. Consider the Lucas series $1,3,4,7,11,18,29,47,76, \ldots$ This sequence is defined recursively by: $a_{1}=1, a_{2}=3$, and, for all $n \geq 3$, $a_{n}=a_{n-1}+a_{n-2}$. Using strong induction prove that $a_{n}<(7 / 4)^{n}$ for all positive integers n.
3. Define a sequence recursively by: $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=2, \mathrm{~b}_{3}=3$, and, for all $\mathrm{n} \geq$ $4, b_{n}=b_{n-1}+b_{n-2}+b_{n-3}$. Using strong induction, prove that $b_{n}<2^{n}$ for all positive integers, n.
4. (Putnam Exam, 2007, A1) Show that every positive integer is a sum of one or more numbers of the form $2^{\mathrm{r}} 3^{\mathrm{s}}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)

Induction makes you feel guilty for getting something out of nothing, and it is artificial, but it is one of the greatest ideas of civilization.

