Math 201: problem set VII

Mathematical Induction

1. What is the flaw in the "induction proof" that: given n spiders, if one is a tarantula, then all the spiders are tarantulas?

2. Review the argument that for all natural numbers n, any $2^n \times 2^n$ chessboard with one square removed can be tiled by tri-ominos. Try to explain it to another member of your group!

- 3. Prove independently (of question #2) that 3 is a divisor of $2^{2n} 1$.
- **II** Using the method of mathematical induction, verify each of the following:
 - 1. 3 | $(n^3 + 2n)$ for all natural numbers *n*. (recall the notation: a|b means that b is a multiple of a)
 - 2. 5 | $(7^n 2^n)$ for all natural numbers *n*.
 - 3. $1 + 3 + 5 + ... + (2n 1) = n^2$ for all natural numbers *n*.
 - 4. $(1 + x)^n \ge 1 + nx$ for all real $x \ge 0$ and all natural numbers n. (This is called *Bernoulli's inequality*.)
 - 5. 1 + 2 + 3 + ... + n = n(n+1)/2 for all natural numbers *n*.
 - 6. $1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$ for all natural numbers *n*.
 - $2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} 2$ for all natural numbers *n*. 7.
 - $4n < 2^n$ for all natural numbers $n \ge 5$. 8.
 - 9. (1)(2) + (2)(3) + (3)(4) + ... + (n)(n+1) = n(n+1)(n+2)/3 for all natural numbers n.
 - 10. $2^n > n^2$ for all natural numbers $n \ge 5$.
 - 11. $13|(8^{2^n}-5^{2^n}))$ for all natural numbers *n*.
 - 12. Consider the sequence $\{a_n\}$ of Fibonacci numbers defined recursively by

$$a_1 = a_2 = 1$$
, and

$$a_{n+2} = a_n + a_{n+1}$$
 for all $n \ge 1$.

Prove that gcd $(a_n, a_{n+1}) = 1$ for all natural numbers *n*.

- 13. 133 | $(12^{2n} 11^n)$ for all non-negative integers *n*.
- 14. (d/dx) xⁿ = n xⁿ⁻¹ for all natural numbers *n*. (You may use the product rule.)
- 15. Prove that, for all natural numbers *n*, any $2^n \times 2^n$ chessboard with one square removed can be tiled by tri-ominos. Prove independently that 3 is a divisor of $2^{2n} 1$
- **III** State the Principle of *Strong Induction*.
 - Using strong induction prove that every integer n ≥ 2 can be expressed as a product of primes.
 - Consider the Lucas series 1, 3, 4, 7, 11, 18, 29, 47, 76, This sequence is defined recursively by: a₁ = 1, a₂ = 3, and, for all n ≥ 3, a_n = a_{n-1} + a_{n-2}. Using strong induction prove that a_n < (7/4)ⁿ for all positive integers *n*.
 - 3. Define a sequence recursively by: b₁ = 1, b₂ = 2, b₃ = 3, and, for all n ≥
 4, b_n = b_{n-1} + b_{n-2} + b_{n-3}. Using strong induction, prove that b_n < 2ⁿ for all positive integers, n.

4. (Putnam Exam, 2007, A1) Show that every positive integer is a sum of one or more numbers of the form $2^{r}3^{s}$, where *r* and *s* are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

Induction makes you feel guilty for getting something out of nothing, and it is artificial, but it is one of the greatest ideas of civilization.