1. Prove that an acyclic connected graph with at least two vertices must have a leaf.

Solution: Here is one of several ways of proving this result.
Assume that G is an acyclic connected graph with N vertices, where $N>1$.
Choose any vertex; call it V_{1}. Then choose an edge, $V_{1} V_{2}$, where V_{2} is a vertex not visited already. (This is possible since $N>1$).

Next choose an edge, $V_{2} V_{3}$, where V_{3} has not been visited earlier. If there is no such vertex, then the degree of V_{2} is 1 .

Next, choose an edge, $V_{3} V_{4}$, where V_{4} has not been visited earlier. If there is no such vertex, then either the degree of V_{3} is 1 or we have found a cycle. The latter is not possible since G is acyclic.

We continue to choose vertices in this manner (one says, "inductively"), until we find a vertex, V_{K}, of degree 1. Since there are but N vertices, this process must halt before $K=N+1$. When it halts, we will have found a vertex of degree 1 (or a cycle, which is not possible).
2. How many trailing zeroes are there in the expansion of 100! (A computer solution will earn no credit.) For example, 10 ! has two trailing zeroes. (Extra credit: Same question for 1000 !)

Solution: Since the only way that a trailing 0 can appear is to have factors 2 and 5. Clearly the number of factors 2 is at least as great as the number of 5 s . So we must compute the highest power of 5 that is a factor of 100 ! This amounts to considering the multiples of 5 that are no bigger than 100, namely: $5,10,15,20,25,30, \ldots, 100$.
Now each member of this sequence, with the exception of 25, 50, 75 and 100, (which are divisible by 5^{2}) contributes one factor of 5 . Also each of $25,50,75$ and 100 contributes two factors of five.
Hence the number of trailing zeros of $100!$ is $20+4=24$.
3. Prove by mathematical induction that $\mathrm{n}!<\mathrm{n}^{\mathrm{n}}$ for $\mathrm{n} \geq 2$.

Solution: For $\mathrm{n} \geq 2$ let \mathscr{F}_{n} be the statement $\mathrm{n}!<\mathrm{n}^{\mathrm{n}}$.
Base case: Consider $\mathscr{F}_{2}: 2!<2^{2} . L H S=2!=2 ; R H S=2^{2}=4$. Since LHS $<$ RHS, the base case, \mathscr{F}_{2}, is true.

Inductive step: Let k be a given integer that is greater than or equal to 2 .
We assume that \mathscr{F}_{k} is true, namely: $k!<k^{k}$.
Since $k+1>0: \quad(k+1)!<(k+1) k^{k}<(k+1)(k+1)^{k}=(k+1)^{k+1}$ and so \mathscr{H}_{k+1} is true.
4. Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be non-empty sets. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be injective and let $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be injective. Must it follow that the composition of the two functions
gof : $\mathrm{X} \rightarrow \mathrm{Z}$ be injective? Recall the definition of composition, viz. $\forall \mathrm{x} \in \mathrm{X} \operatorname{g} \circ \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))$.
Give proof or counterexample.
Solution: Yes, it must follow that $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is injective.
Proof: Assume that there exist $a, b \in X$ such that $g \circ f(a)=g \circ f(b)$.
That is, $g(f(a))=g(f(b))$. Now since g is injective $f(a)=f(b)$.
Since g is injective, it follows that $a=b$.
Thus $\mathrm{g} \circ \mathrm{f}(\mathrm{x})$ is injective.
5. Is the converse to problem \#4 true? Give proof or counterexample. (Begin by stating the converse!)

Solution:

The converse states:
Let X, Y, Z be non-empty sets. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Assume that g of : $X \rightarrow Z$ is injective. Then it follows that both f and g are injective.

The converse is false; here is a counterexample:

Let $X=\{1,2\}, Y=\{1,2,3\}$ and $Z=\{1,2\}$.

Define $f: \mathrm{X} \rightarrow \mathrm{Y}$ as follows: $\quad f(1)=1$ and $f(2)=2$.
Define $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ as follows: $g(1)=1, g(2)=2$ and $g(3)=1$.

Notice that g is not injective since $g(1)=g(3)$.
However g of $: X \rightarrow Z$ is injective since:
$g \circ f(1)=1$
$g \circ f(2)=2$

Induction makes you feel guilty for getting something out of nothing, and it is artificial, but it is one of the greatest ideas of civilization.

- Herbert Wilf

