
MATH 201              Solutions:  TEST 3-A (in class) 

 

Numbers are the highest degree of knowledge. It is knowledge itself. 

- Plato 

Part I   [7 pts each]    

1. Carefully state the Well-Ordering Principle. 

 

The well-ordering principle states that every non-empty set of positive 

integers contains a least element. 

 

2. Carefully state the Euclidean Division Algorithm. 

Given two integers a and b, with b ≠ 0, there 

exist unique integers q and r such that   

a = bq + r and 0 ≤  r < |b|. 

 

3. Define gcd(a, b). 

The greatest common divisor of two integers (not both zero) is the largest integer which divides 

both of them. 

 

Equivalently, if a and b are not both zero, d = gcd(a, b) if the following two conditions are 

satisfied: 

(1)   d|s and d|b 

(2)  If e|a and e|b then |e|  d 

 

4.  State (the conclusion of) Euclid’s extended gcd algorithm. 

The conclusion of the extended Euclidean algorithm is: 

 

If a and b are integers, not both 0, then there exist integers x and y such that  

ax + by = gcd(a, b). 

 

5. Carefully state Fermat’s little theorem. 

 

If p is a prime number, then for any integer a, 

 𝑎𝑝 ≡ 𝑎 (𝑚𝑜𝑑 𝑝). 

 

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that 

 𝑎𝑝−1 ≡ 1 (𝑚𝑜𝑑 𝑝). 

 

6.   State Euclid’s theorem on prime numbers. 
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There exist infinitely many primes. 

 

Part II [10 pts each]    

1. Explain why every integer can be expressed in the form 5n, 5n+1, 5n+2, 5n+3 or 5n+4. 

 

It follows from Euclid’s division algorithm that every integer can be represented as 5q+ r,  

where 0   r < 4. 

 

2. Using the Euclidean algorithm, find gcd(306, 657) 

 

gcd(306, 657) = gcd(657, 306) = gcd(45, 306) = gcd(306, 45) = gcd(36, 45) = gcd(45, 36) = 

gcd(9, 36) = gcd(36, 9) = gcd(0, 9) = gcd(9, 0) = 9 

 

 

3. Using the extended Euclidian algorithm, find integers x and y such that  

56x + 22y = gcd(56, 22). 

First we use the Euclidean algorithm to find gcd(56, 22): 

56 = 22 (2) + 12  

22 = 12(1) + 10 

12 = 10(1) + 2 

10 = 2(5) + 0 

So the gcd is 2. 

Now, using back-substitution: 

2 = 12 – 10(1) 

= 12 – (22 – 12) = 2(12) – 22 

= 2(56 – 22(2)) – 22 = 2(56) – 5 (22)  

We conclude that an integer solution of 56x + 22y = gcd(56, 22)  

is x = 2 and y = -5.   

 

 

4.    Prove that gcd(a, b – a) = gcd(a, b). 

Let d = gcd(a, b – a)   and d* = gcd(a, b). 
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Now d|a and d| (b – a) by definition of gcd. 

So d| {a + (b – a)} = b 

Thus d|a and d| b.    So, by definition of gcd, |d|  |d*| 

 

Next, d*|a and d*|b.   So, d*| ((-1) a + b)    d* | b – a. 

Thus |d*|  |d|. 

So we arrive at |d*| = |d|.  Of course, d and d* are each positive, so d* = d. 

 

5.  Using Fermat’s little theorem find  5101 (mod 31) 

Since 31 is a prime and not a factor of 5, Fermat’s little theorem states 530  1 (mod 31). 

And so 590 = (530)3  13 = 1 (mod 31). 

Next 5101 = 590 511   511 (mod 31). 

Note that 53 = 125 = 4(31) + 1  1 (mod 31). 

Finally, 5101   511 = (53)3 52   13 25 = 25   (mod 31). 

 

6.   The converse to Fermat’s little theorem is false.  Namely: 

If am-1  1 mod m, it need not follow that m is prime. 

(a) [7 pts]  Find  2560 mod 561 

First, note that 210  463 (mod 561). 

So 220 =(210)2     4632 67  (mod 561) 

So 240 =(220)2    672  1  (mod 561) 

Finally, 2560 = (240)14  114 = 1 (mod 561) 

 

(b)   [3 pts] Show that 561 is not a prime number.   (Such numbers are called pseudo-primes.) 

Since 3|561, 561 cannot be prime. 

 

7. Prove that if a|b and c|d then ac|bd. 

Since a| b   m Z such that b = am. 
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Since c|d  n Z such that d = cn. 

Thus bd = (am) (cn) = (ac) (mn). Of course mn Z. 

Hence ac|bd. 

 

 

8.  Prove that √3  is irrational. 

 

Suppose, contrary to fact, that that √3  is rational.  Then  a, b  Z, b  0 , such that  

  √3  = a/b.  

We may assume that a and b are relatively prime.  (If not, divide each of a and b by gcd(a, b).) 

So a2 = 3b2.   Hence a2 is a multiple of 3.  This implies that a is a multiple of 3.  (Examine the 

three cases:   a = 3p, a = 3p+1, a = 3p+2.)    

Hence  q  Z such that a = 3q.  

So 3b2 = a2 = (3q)2 = 9q2.    

From this, we obtain:  b2 = 3q2.  As argued earlier, this implies that b is a multiple of 3. 

This is clearly a contradiction, since if a and b were divisible by 3, then a and b would not be 

relatively prime, as we assumed above. 

 

 

9.   Prove that the square of any integer is either of the form 3k or 3k+1. 

 

Using the division algorithm, every integer, n, may be expressed as  

n = 3z + r where r = 0, 1, 2. 

Examining each of these three cases: 

(3z)2 = 3(3z2) 

(3z + 1)2 = 9z2 + 6z + 1 = 3(3z2 + 2z) + 1 

(3z + 2)2 = 9z2 + 12z + 4 = 3(3z2 + 4z + 1) + 1 

Thu,s for each of the three cases, n2 is either of the form 3k or 3k+1. 
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Extra credit: 

1.   [10 pts]   Prove by induction:    For n  N,   if an|bn then a|b. 

 

For each n N, let Hn represent the statement:   if an|bn then a|b. 

Base Case:   H1 is true since if a1|b1 then clearly a|b. 

Inductive step:  Let n  0 be given.   Assume that an+1|bn+1. 

Let d = gcd(a, b).   Let A = a/d and B = b/d.   We have proven earlier that A and B are 

relatively prime.   Now, an+1|bn+1 implies that An+1|Bn+1. 

It is easy to show that An+1 and Bn+1 are relatively prime. 

Rewriting:     AAn | BBn    

Then, by Euclid’s lemma, since A and B are relatively prime,  An|B or An |Bn. 

If An |Bn, then we can use the inductive hypothesis to conclude that A|B and hence a|b. 

If An | B, then of course A|B. 

 

2. [10 pts]   Prove that (3n)!/(3!)n is an integer for all n  0.    (Recall that 0! = 1) 

 

For each n  0, let Hn represent the statement:   if an|bn then a|b. 

Base case:  n = 0:    (3(0))!/(3!)0  == 1  Z. 

Inductive step:  Assume that n  0 is given and that Hn is true. 

Now (3(n+1))!/(3!)n+1 = (3n + 3)! / (3!)n+1  = (
(3𝑛)!

(3!)𝑛) (
(3𝑛+1)(3𝑛+2)(3𝑛+3)

3!
) = 

 

 (
(3𝑛)!

(3!)𝑛) (𝑛 + 1)
(3𝑛+1)(3𝑛+2)

2
 

 

Now, by inductive hypothesis, (
(3𝑛)!

(3!)𝑛) is an integer.  Furthermore, the product of two 

consecutive integers is even.   Thus (3n+1)(3n+2) is divisible by 2. 

So we have shown that Hn+1 is true. 


