Numbers are the highest degree of knowledge. It is knowledge itself.

- Plato

Part I [7 pts each]

1. Carefully state the Well-Ordering Principle.

The well-ordering principle states that every non-empty set of positive integers contains a least element.
2. Carefully state the Euclidean Division Algorithm.

Given two integers a and b, with $b \neq 0$, there
exist unique integers q and r such that
$a=b q+r$ and $0 \leq r<|b|$.
3. Define $g c d(a, b)$.

The greatest common divisor of two integers (not both zero) is the largest integer which divides both of them.

Equivalently, if a and b are not both zero, $d=\operatorname{gcd}(a, b)$ if the following two conditions are satisfied:
(1) $d \mid s$ and $d \mid b$
(2) If $e \mid a$ and $e \mid b$ then $|e| \leq d$
4. State (the conclusion of) Euclid's extended gcd algorithm.

The conclusion of the extended Euclidean algorithm is:
If a and b are integers, not both 0 , then there exist integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.
5. Carefully state Fermat's little theorem.

If p is a prime number, then for any integer a, $a^{p} \equiv a(\bmod p)$.

If a is not divisible by p, Fermat's little theorem is equivalent to the statement that $a^{p-1} \equiv 1(\bmod p)$.
6. State Euclid's theorem on prime numbers.

There exist infinitely many primes.

Part II [10 pts each]

1. Explain why every integer can be expressed in the form $5 n, 5 n+1,5 n+2,5 n+3$ or $5 n+4$.

It follows from Euclid's division algorithm that every integer can be represented as $5 q+r$, where $0 \leq r<4$.
2. Using the Euclidean algorithm, find $\operatorname{gcd}(306,657)$ $\operatorname{gcd}(306,657)=\operatorname{gcd}(657,306)=\operatorname{gcd}(45,306)=\operatorname{gcd}(306,45)=\operatorname{gcd}(36,45)=\operatorname{gcd}(45,36)=$ $\operatorname{gcd}(9,36)=\operatorname{gcd}(36,9)=\operatorname{gcd}(0,9)=\operatorname{gcd}(9,0)=9$
3. Using the extended Euclidian algorithm, find integers x and y such that $56 x+22 y=\operatorname{gcd}(56,22)$.

First we use the Euclidean algorithm to find gcd(56, 22):

$$
\begin{aligned}
& 56=22(2)+12 \\
& 22=12(1)+10 \\
& 12=10(1)+2 \\
& 10=2(5)+0
\end{aligned}
$$

So the gcd is 2.
Now, using back-substitution:

$$
\begin{aligned}
& 2=12-10(1) \\
& =12-(22-12)=2(12)-22 \\
& =2(56-22(2))-22=2(56)-5(22)
\end{aligned}
$$

We conclude that an integer solution of $56 x+22 y=\operatorname{gcd}(56,22)$
is $\boldsymbol{x}=2$ and $\boldsymbol{y}=-5$.
4. Prove that $\operatorname{gcd}(a, b-a)=\operatorname{gcd}(a, b)$.

Let $d=\operatorname{gcd}(a, b-a) \quad$ and $d^{*}=\operatorname{gcd}(a, b)$.

Now $d \mid a$ and $d \mid(b-a)$ by definition of $g c d$.
So $d \mid\{a+(b-a)\}=b$
Thus $d \mid$ a and $d \mid$. So, by definition of $g c d,|d| \leq\left|d^{*}\right|$

Next, $d^{*} \mid a$ and $d^{*} \mid b$. So, $d^{*}\left|((-1) a+b) \Longrightarrow d^{*}\right| b-a$.
Thus $\left|d^{*}\right| \leq|d|$.
So we arrive at $\left|d^{*}\right|=|d|$. Of course, d and d^{*} are each positive, so $d^{*}=d$.
5. Using Fermat's little theorem find $5^{101}(\bmod 31)$

Since 31 is a prime and not a factor of 5, Fermat's little theorem states $5^{30} \equiv 1(\bmod 31)$.
And so $5^{90}=\left(5^{30}\right)^{3} \equiv 1^{3}=1(\bmod 31)$.
Next $5^{101}=5^{90} 5^{11} \equiv 5^{11}(\bmod 31)$.
Note that $5^{3}=125=4(31)+1 \equiv 1(\bmod 31)$.
Finally, $5^{101} \equiv 5^{11}=\left(5^{3}\right)^{3} 5^{2} \equiv 1^{3} 25=25(\bmod 31)$.
6. The converse to Fermat's little theorem is false. Namely: If $\mathrm{am}^{-1} \equiv 1 \bmod \mathrm{~m}$, it need not follow that m is prime.
(a) $\left[7\right.$ pts] Find $2^{560} \bmod 561$

First, note that $2^{10} \equiv 463(\bmod 561)$.
So $2^{20}=\left(2^{10}\right)^{2} \equiv 463^{2} \equiv 67(\bmod 561)$
So $2^{40}=\left(2^{20}\right)^{2} \equiv 67^{2} \equiv 1(\bmod 561)$
Finally, $2^{560}=\left(2^{40}\right)^{14} \equiv 1^{14}=1(\bmod 561)$
(b) [3 pts] Show that 561 is not a prime number. (Such numbers are called pseudo-primes.) Since 3|561, 561 cannot be prime.
7. Prove that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{c} \mid \mathrm{d}$ then $\mathrm{ac} \mid \mathrm{bd}$.

Since $a \mid b \quad \exists m \in Z$ such that $b=a m$.

Since $c \mid d \exists n \in Z$ such that $d=c n$.
Thus $b d=(a m)(c n)=(a c)(m n)$. Of course $m n \in Z$.
Hence ac|bd.
8. Prove that $\sqrt{3}$ is irrational.

Suppose, contrary to fact, that that $\sqrt{3}$ is rational. Then $\exists a, b \in Z, b \neq 0$, such that $\sqrt{3}=a / b$.

We may assume that a and b are relatively prime. (If not, divide each of a and b by gcd (a, b).) So $a^{2}=3 b^{2}$. Hence a^{2} is a multiple of 3. This implies that a is a multiple of 3. (Examine the three cases: $\quad a=3 p, a=3 p+1, a=3 p+2$.)

Hence $\exists q \in Z$ such that $a=3 q$.
So $3 b^{2}=a^{2}=(3 q)^{2}=9 q^{2}$.
From this, we obtain: $b^{2}=3 q^{2}$. As argued earlier, this implies that b is a multiple of 3 .
This is clearly a contradiction, since if a and b were divisible by 3, then a and b would not be relatively prime, as we assumed above.
9. Prove that the square of any integer is either of the form 3 k or $3 \mathrm{k}+1$.

Using the division algorithm, every integer, n, may be expressed as

$$
n=3 z+r \text { where } r=0,1,2 .
$$

Examining each of these three cases:

$$
\begin{aligned}
& (3 z)^{2}=3\left(3 z^{2}\right) \\
& (3 z+1)^{2}=9 z^{2}+6 z+1=3\left(3 z^{2}+2 z\right)+1 \\
& (3 z+2)^{2}=9 z^{2}+12 z+4=3\left(3 z^{2}+4 z+1\right)+1
\end{aligned}
$$

Thu,s for each of the three cases, n^{2} is either of the form $3 k$ or $3 k+1$.

EXTRA CREDIT:

1. [10 pts] Prove by induction: For $\mathrm{n} \in \mathrm{N}$, if $\mathrm{a}^{\mathrm{n}} \mid \mathrm{b}^{\mathrm{n}}$ then $\mathrm{a} \mid \mathrm{b}$.

For each $n \in N$, let H_{n} represent the statement: if $a^{n} \mid b^{n}$ then $a \mid b$.
Base Case: H_{l} is true since if $a^{l} \mid b^{l}$ then clearly $a \mid b$.
Inductive step: Let $n \geq 0$ be given. Assume that $a^{n+1} \mid b^{n+1}$.
Let $d=\operatorname{gcd}(a, b)$. Let $A=a / d$ and $B=b / d$. We have proven earlier that A and B are relatively prime. Now, $a^{n+1} \mid b^{n+1}$ implies that $A^{n+1} \mid B^{n+1}$.

It is easy to show that A^{n+1} and B^{n+1} are relatively prime.
Rewriting: $\quad A A^{n} \mid B B^{n}$
Then, by Euclid's lemma, since A and B are relatively prime, $A^{n} \mid B$ or $A^{n} \mid B^{n}$.
If $A^{n} \mid B^{n}$, then we can use the inductive hypothesis to conclude that $A \mid B$ and hence $a \mid b$. If $A^{n} \mid B$, then of course $A \mid B$.
2. [10 pts] Prove that $(3 \mathrm{n})!(3!)^{\mathrm{n}}$ is an integer for all $\mathrm{n} \geq 0$. (Recall that $0!=1$)

For each $n \geq 0$, let H_{n} represent the statement: if $a^{n} \mid b^{n}$ then $a \mid b$.
Base case: $n=0: \quad(3(0))!/(3!)^{0}==1 \in Z$.
Inductive step: Assume that $n \geq 0$ is given and that H_{n} is true.

$$
\begin{aligned}
& \operatorname{Now}(3(n+1))!/(3!)^{n+1}=(3 n+3)!/(3!)^{n+1}=\left(\frac{(3 n)!}{(3!)^{n}}\right)\left(\frac{(3 n+1)(3 n+2)(3 n+3)}{3!}\right)= \\
& \left(\frac{(3 n)!}{(3!)^{n}}\right)(n+1) \frac{(3 n+1)(3 n+2)}{2}
\end{aligned}
$$

Now, by inductive hypothesis, $\left(\frac{(3 n)!}{(3!)^{n}}\right)$ is an integer. Furthermore, the product of two consecutive integers is even. Thus $(3 n+1)(3 n+2)$ is divisible by 2.
So we have shown that H_{n+1} is true.

