CLASS DISCUSSION: CARDINALITY

REVISED
14 November 2017

I What does it mean to say that two sets have the same cardinality? What does it mean to say that a set is countably infinite?

II Show that each of the following sets is countable:
(a) The set of non-negative integers.
(b) The set of integers greater than or equal to 13 .
(c) \mathbf{Z}
(d) The set of positive even integers.
(e) The set of even integers.
(f) The set of odd integers.
(g) The set of rational numbers strictly between 0 and 1 .

III (a) Show that a subset of a countable set is either finite or countable.
(b) Show that if A and B are disjoint countable sets then so is the union of A and B.

What if A and B are not disjoint?
(c) Show that if A and B are countable sets then so is the Cartesian product of A and B.
(d) Prove that a countable union of countable sets is countably infinite.
(e) Prove that the set of rational numbers strictly between 0 and 1 is uncountable.
(f) Demonstrate that \mathbf{Q} is countable.

IV Show that if S is a collection of sets, then cardinality is an equivalence relation on S.
\mathbf{V} Using Cantor's diagonal argument, prove that \mathbf{R} is not countable.

VI (a) Let X be a set. Recall the definition of the power set, $\mathscr{P}(X)$, of X.
(b) Show that the power set of a finite set is finite. In such case, describe the relationship between $|\mathrm{X}|$ and $|\mathscr{P}(\mathrm{X})|$.
(c) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and let $\mathrm{F}: \mathrm{X} \rightarrow \mathscr{P}(\mathrm{X})$ be defined by:
$\mathrm{F}(\mathrm{a})=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{F}(\mathrm{b})=\{\mathrm{a}, \mathrm{d}\}, \mathrm{F}(\mathrm{c})=\varphi, \mathrm{F}(\mathrm{d})=\{\mathrm{d}\}$
Find $\mathrm{D}^{*}=\{j \in X \mid j \notin F(j)\}$
(d) Let $\mathrm{X}=\mathrm{Z}^{+}$and let $\mathrm{G}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ be defined by:
$\mathrm{G}(\mathrm{a})=\{$ all prime numbers, p , such that $\mathrm{a} \leq \mathrm{p} \leq 2 \mathrm{a}\}$
Find $\mathrm{D}^{*}=\{j \in X \mid j \notin G(j)\}$
(e) Let $\mathrm{X}=\mathbf{Q}$ and let $\mathrm{H}: \mathrm{X} \rightarrow \mathscr{P}(\mathrm{X})$ be defined by:
$H(z)=\{$ all prime numbers, p, such that $\mathrm{z} \leq \mathrm{p} \leq 2 \mathrm{z}\}$
Find $D^{*}=\{q \in X \mid q \notin H(q)\}$
(f) Let $\mathrm{X}=\mathbf{R}$ and let $\mathrm{V}: \mathrm{X} \rightarrow \mathscr{P}(\mathrm{X})$ be defined by:

$$
V(a)=\left\{\begin{array}{l}
\{0\} \text { if } a \leq 0 \\
(a, a+1) \text { if } a \in Q^{+} \sim Z \\
{[a-1, a] \text { if } a \text { is } a \text { positive irrational number }} \\
\{a, a+3\} \text { if } a \in Z^{+}
\end{array}\right.
$$

Is V well-defined? If so, find $\mathrm{D}^{*}=\{z \in X \mid z \notin V(z)\}$
(g) Prove Cantor's Theorem: X and $\mathscr{P}(\mathrm{X})$ are not of the same cardinality.

Highly recommended:

MIT lecture notes on cardinality, 24.118 (paradox and infinity)

Georg Ferdinand Ludwig Cantor (1845-1918) is best known for his discovery of transfinite numbers and the creation of Set Theory.

Lenore nodded. 'Gramma really likes antinomies. I think this guy here, 'looking down at the drawing on the back of the label, 'is the barber who shaves all and only those who do not shave themselves'.

- David Foster Wallace, The Broom of the System

Course Home Page Department Home Page Loyola Home Page

