Part I:

- 1. State the well-ordering principle.
- 2. Using the WOP, prove the division algorithm.

Part II:

- 3. Let a, b be integers. Then $aa \equiv b \pmod{6}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$
- 4. Prove by contradiction that $\sqrt{3}$ is irrational.
- 5. Prove by contradiction that if x is irrational then so is $x^{1/2}$.
- 6. Prove by contradiction that $2^{1/3}$ is irrational.
- 7. Suppose $n \in Z$. Prove that n is odd if and only if n^2 is odd.
- 8. Prove by contradiction that if $0 \le t \le \pi/2$ then $\cos t + \sin t \ge 1$.
- 9. Let a and b be integers. If $a^2 + b^2 = c^2$, then a or b is even.
- **7.** If $a, b \in \mathbb{Z}$, then $a^2 4b 3 \neq 0$.
- **8.** Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.
- **9.** Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.
- **10.** There exist no integers *a* and *b* for which 21a + 30b = 1.
- **11.** There exist no integers *a* and *b* for which 18a + 6b = 1.
- **12.** For every positive $x \in \mathbb{Q}$, there is a positive $y \in \mathbb{Q}$ for which y < x.
- **13.** For every $x \in [\pi/2, \pi]$, $\sin x \cos x \ge 1$.
- **14.** If A and B are sets, then $A \cap (B A) = \emptyset$.
- **15.** If $b \in \mathbb{Z}$ and $b \nmid k$ for every $k \in \mathbb{N}$, then b = 0.
- **16.** If *a* and *b* are positive real numbers, then $a + b \ge 2\sqrt{ab}$.
- **17.** For every $n \in \mathbb{Z}$, $4 \nmid (n^2 + 2)$.
- **18.** Suppose $a, b \in \mathbb{Z}$. If $4 | (a^2 + b^2)$, then *a* and *b* are not both odd.

Prove the following statements using any method from Chapters 4, 5 or 6.

- **19.** The product of any five consecutive integers is divisible by 120. (For example, the product of 3,4,5,6 and 7 is 2520, and $2520 = 120 \cdot 21$.)
- **20.** We say that a point P = (x, y) in \mathbb{R}^2 is **rational** if both x and y are rational. More precisely, P is rational if $P = (x, y) \in \mathbb{Q}^2$. An equation F(x, y) = 0 is said to have a **rational point** if there exists $x_0, y_0 \in \mathbb{Q}$ such that $F(x_0, y_0) = 0$. For example, the curve $x^2 + y^2 - 1 = 0$ has rational point $(x_0, y_0) = (1, 0)$. Show that the curve $x^2 + y^2 - 3 = 0$ has no rational points.
- **21.** Exercise 20 (above) involved showing that there are no rational points on the curve $x^2 + y^2 3 = 0$. Use this fact to show that $\sqrt{3}$ is irrational.
- **22.** Explain why $x^2 + y^2 3 = 0$ not having any rational solutions (Exercise 20) implies $x^2 + y^2 3^k = 0$ has no rational solutions for *k* an odd, positive integer.
- 23. Proof or counter-example: if a $ac \equiv bc \pmod{n}$ then $a \equiv b \pmod{n}$

Exercises for Chapter 7

Prove the following statements. These exercises are cumulative, covering all techniques addressed in Chapters 4–7.

- **1.** Suppose $x \in \mathbb{Z}$. Then x is even if and only if 3x + 5 is odd.
- 2. Suppose $x \in \mathbb{Z}$. Then x is odd if and only if 3x + 6 is odd.
- 3. Given an integer a, then $a^3 + a^2 + a$ is even if and only if a is even.
- 4. Given an integer a, then $a^2 + 4a + 5$ is odd if and only if a is even.
- 5. An integer a is odd if and only if a^3 is odd.
- **6.** Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x.
- 7. Suppose $x, y \in \mathbb{R}$. Then $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.
- **8.** Suppose $a, b \in \mathbb{Z}$. Prove that $a \equiv b \pmod{10}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{5}$.
- **9.** Suppose $a \in \mathbb{Z}$. Prove that $14 \mid a$ if and only if $7 \mid a$ and $2 \mid a$.
- 10. If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$.
- **11.** Suppose $a, b \in \mathbb{Z}$. Prove that $(a-3)b^2$ is even if and only if a is odd or b is even.
- **12.** There exist a positive real number *x* for which $x^2 < \sqrt{x}$.
- **13.** Suppose $a, b \in \mathbb{Z}$. If a + b is odd, then $a^2 + b^2$ is odd.
- 14. Suppose $a \in \mathbb{Z}$. Then $a^2 \mid a$ if and only if $a \in \{-1, 0, 1\}$.
- **15.** Suppose $a, b \in \mathbb{Z}$. Prove that a + b is even if and only if a and b have the same parity.
- **16.** Suppose $a, b \in \mathbb{Z}$. If ab is odd, then $a^2 + b^2$ is even.
- 17. There is a prime number between 90 and 100.
- **18.** There is a set X for which $N \in X$ and $N \subseteq X$.
- **19.** If $n \in \mathbb{N}$, then $2^0 + 2^1 + 2^2 + 2^3 + 2^4 + \dots + 2^n = 2^{n+1} 1$.
- 20. There exists an $n \in \mathbb{N}$ for which $11 | (2^n 1)$.
- **21.** Every real solution of $x^3 + x + 3 = 0$ is irrational.
- **22.** If $n \in \mathbb{Z}$, then $4 | n^2$ or $4 | (n^2 1)$.
- **23.** Suppose a, b and c are integers. If $a \mid b$ and $a \mid (b^2 c)$, then $a \mid c$.
- **24.** If $a \in \mathbb{Z}$, then $4 \nmid (a^2 3)$.

