CLASS DISCUSSION:

Part I:

1. State the well-ordering principle.
2. Using the WOP, prove the division algorithm.

Part II:

3. Let a, b be integers. Then $\mathrm{a} a \equiv b(\bmod 6)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$
4. Prove by contradiction that $\sqrt{3}$ is irrational.
5. Prove by contradiction that if x is irrational then so is $\mathrm{x}^{1 / 2}$.
6. Prove by contradiction that $2^{1 / 3}$ is irrational.
7. Suppose $\mathrm{n} \in \mathrm{Z}$. Prove that n is odd if and only if n^{2} is odd.
8. Prove by contradiction that if $0 \leq \mathrm{t} \leq \pi / 2$ then $\cos \mathrm{t}+\sin \mathrm{t} \geq 1$.
9. Let a and b be integers. If $a^{2}+b^{2}=c^{2}$, then a or b is even.
10. If $a, b \in \mathbb{Z}$, then $a^{2}-4 b-3 \neq 0$.
11. Suppose $a, b, c \in \mathbb{Z}$. If $a^{2}+b^{2}=c^{2}$, then a or b is even.
12. Suppose $a, b \in \mathbb{R}$. If a is rational and $a b$ is irrational, then b is irrational.
13. There exist no integers a and b for which $21 a+30 b=1$.
14. There exist no integers a and b for which $18 a+6 b=1$.
15. For every positive $x \in \mathbb{Q}$, there is a positive $y \in \mathbb{Q}$ for which $y<x$.
16. For every $x \in[\pi / 2, \pi], \sin x-\cos x \geq 1$.
17. If A and B are sets, then $A \cap(B-A)=\varnothing$.
18. If $b \in \mathbb{Z}$ and $b \nmid k$ for every $k \in \mathbb{N}$, then $b=0$.
19. If a and b are positive real numbers, then $a+b \geq 2 \sqrt{a b}$.
20. For every $n \in \mathbb{Z}, 4 \nmid\left(n^{2}+2\right)$.
21. Suppose $a, b \in \mathbb{Z}$. If $4 \mid\left(a^{2}+b^{2}\right)$, then a and b are not both odd.

Prove the following statements using any method from Chapters 4,5 or 6.
19. The product of any five consecutive integers is divisible by 120 . (For example, the product of $3,4,5,6$ and 7 is 2520 , and $2520=120 \cdot 21$.)
20. We say that a point $P=(x, y)$ in \mathbb{R}^{2} is rational if both x and y are rational. More precisely, P is rational if $P=(x, y) \in \mathbb{Q}^{2}$. An equation $F(x, y)=0$ is said to have a rational point if there exists $x_{0}, y_{0} \in \mathbb{Q}$ such that $F\left(x_{0}, y_{0}\right)=0$. For example, the curve $x^{2}+y^{2}-1=0$ has rational point $\left(x_{0}, y_{0}\right)=(1,0)$. Show that the curve $x^{2}+y^{2}-3=0$ has no rational points.
21. Exercise 20 (above) involved showing that there are no rational points on the curve $x^{2}+y^{2}-3=0$. Use this fact to show that $\sqrt{3}$ is irrational.
22. Explain why $x^{2}+y^{2}-3=0$ not having any rational solutions (Exercise 20) implies $x^{2}+y^{2}-3^{k}=0$ has no rational solutions for k an odd, positive integer.
23. Proof or counter-example: if a $a c \equiv b c(\bmod n)$ then $a \equiv b(\bmod n)$

Exercises for Chapter 7

Prove the following statements. These exercises are cumulative, covering all techniques addressed in Chapters 4-7.

1. Suppose $x \in Z$. Then x is even if and only if $3 x+5$ is odd.
2. Suppose $x \in Z$. Then x is odd if and only if $3 x+6$ is odd.
3. Given an integer a, then $a^{3}+a^{2}+a$ is even if and only if a is even.
4. Given an integer a, then $a^{2}+4 a+5$ is odd if and only if a is even.
5. An integer a is odd if and only if a^{3} is odd.
6. Suppose $x, y \in \mathbb{R}$. Then $x^{3}+x^{2} y=y^{2}+x y$ if and only if $y=x^{2}$ or $y=-x$.
7. Suppose $x, y \in \mathbb{R}$. Then $(x+y)^{2}=x^{2}+y^{2}$ if and only if $x=0$ or $y=0$.
8. Suppose $a, b \in \mathbb{Z}$. Prove that $a \equiv b(\bmod 10)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b$ $(\bmod 5)$.
9. Suppose $a \in Z$. Prove that $14 \mid a$ if and only if $7 \mid a$ and $2 \mid a$.
10. If $a \in Z$, then $a^{3} \equiv a(\bmod 3)$.
11. Suppose $a, b \in Z$. Prove that $(a-3) b^{2}$ is even if and only if a is odd or b is even.
12. There exist a positive real number x for which $x^{2}<\sqrt{x}$.
13. Suppose $a, b \in \mathbb{Z}$. If $a+b$ is odd, then $a^{2}+b^{2}$ is odd.
14. Suppose $a \in Z$. Then $a^{2} \mid a$ if and only if $a \in\{-1,0,1\}$.
15. Suppose $a, b \in \mathbf{Z}$. Prove that $a+b$ is even if and only if a and b have the same parity.
16. Suppose $a, b \in \mathbb{Z}$. If $a b$ is odd, then $a^{2}+b^{2}$ is even.
17. There is a prime number between 90 and 100 .
18. There is a set X for which $N \in X$ and $\mathrm{N} \subseteq X$.
19. If $n \in \mathbb{N}$, then $2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+\cdots+2^{n}=2^{n+1}-1$.
20. There exists an $n \in \mathbb{N}$ for which $11 \mid\left(2^{n}-1\right)$.
21. Every real solution of $x^{3}+x+3=0$ is irrational.
22. If $n \in Z$, then $4 \mid n^{2}$ or $4 \mid\left(n^{2}-1\right)$.
23. Suppose a, b and c are integers. If $a \mid b$ and $a \mid\left(b^{2}-c\right)$, then $a \mid c$.
24. If $a \in Z$, then $4 \nmid\left(a^{2}-3\right)$.

HAPPY BIRTHDAY, MOM!
AGE ISA MATTER OF PERSPECTIVE...

