MATH 201: CLASS DISCUSSION (5 SEPT 2017) NAÏVE SET THEORY CONTINUED INTRO TO PROOFS

1. Let A, B and C be three sets such that:

Set $A = \{2, 4, 6, 8, 10, 12\}$, set $B = \{3, 6, 9, 12, 15\}$ and set $C = \{1, 4, 7, 10, 13, 16\}$.

Find:

 $(i) \mathrel{\mathsf{A}} \mathrel{\mathsf{U}} \mathrel{\mathsf{B}}$

(ii) $A \cap B$

- $\text{(iii)}\,B\cap A$
- (iv) $\mathbf{B} \cup \mathbf{A}$
- (v) B U C
- (vi) A B
- (vii) $A (B \cup C)$
- (viii) $A (B \cap C)$
- (ix) Is $A \cup B = B \cup A$?
- (x) Is $B \cap C = B \cup C$?
- 2. Complete each of the following:
- (i) Associativity of set union and intersection:

		$A \cup (B \cup C) =$	$A \cap (B \cap C) =$
(ii)	Commutativity:	$A \cup B =$	$A \cap B =$
(iii)	Distributivity:	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C),$	$A \cap (B \cup C) =$
(iv)	De Morgan Laws:	$(A \cup B)^c =$	$(A \cap B)^c =$
(v)	Complementation	$A \cup A^c =$	$A \cap A^c =$
(vi)	Double complement: $(A^c)^c =$		

3. True or False? Give proof or counterexample.

(a) $A \cup B \subseteq A \cap B$

- (b) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$
- (c) $A \cup (B \cap C) \supseteq (A \cup B) \cap (A \cup C)$
- (d) $A (B \cap C) = (A B) \cup (A C)$
- $(e) \quad A-B=B^c-A^c$
- (f) $(A \cup B) \cap C \supseteq (A \cup B) \cap (A \cup C)$
- 4. [Halmos, Naïve Set Theory]

EXERCISE. A necessary and sufficient condition that $(A \cap B) \cup C = A \cap (B \cup C)$ is that $C \subset A$. Observe that the condition has nothing to do with the set B.

- 5. [Halmos, Naïve Set Theory]
 - (a) Prove that $P(E) \cap P(F) = P(E \cap F)$
 - (b) Prove that $P(E) \cup P(F) \subseteq P(E \cup F)$

