MATH 201: CL\&SS DISCUSSION (5 SEPT 2017) NAÏVE SET THEORY CONTINUED INTRO TO PROOFS

1. Let A, B and C be three sets such that:

Set $A=\{2,4,6,8,10,12\}$, set $B=\{3,6,9,12,15\}$ and set $C=\{1,4,7,10,13,16\}$.
Find:
(i) $A \cup B$
(ii) $\mathrm{A} \cap \mathrm{B}$
(iii) $\mathrm{B} \cap \mathrm{A}$
(iv) $\mathrm{B} \cup \mathrm{A}$
(v) $\mathrm{B} \cup \mathrm{C}$
(vi) $\mathrm{A}-\mathrm{B}$
(vii) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})$
(viii) $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})$
(ix) Is $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$?
(x) Is $B \cap C=B \cup C$?
2. Complete each of the following:
(i) Associativity of set union and intersection:

$$
A \cup(B \cup C)=\quad A \cap(B \cap C)=
$$

(ii) Commutativity: $A \cup B=$ $A \cap B=$
(iii) Distributivity: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$, $A \cap(B \cup C)=$
(iv) De Morgan Laws: $(A \cup B)^{c}=$ $(A \cap B)^{c}=$
(v) Complementation: $A \cup A^{c}=$ $A \cap A^{c}=$
(vi) Double complement: $\left(A^{c}\right)^{c}=$
3. True or False? Give proof or counterexample.
(a) $A \cup B \subseteq \mathrm{~A} \cap \mathrm{~B}$
(b) $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$
(c) $A \cup(B \cap C) \supseteq(A \cup B) \cap(A \cup C)$
(d) $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$
(e) $\mathrm{A}-\mathrm{B}=\mathrm{B}^{\mathrm{c}}-\mathrm{A}^{\mathrm{c}}$
(f) $(A \cup B) \cap C \supseteq(A \cup B) \cap(A \cup C)$
4. [Halmos, Naïve Set Theory]

Exercise. A necessary and sufficient condition that $(A \cap B) \cup C=$ $A \cap(B \cup C)$ is that $C \subset A$. Observe that the condition has nothing to do with the set B.
5. [Halmos, Naïve Set Theory]
(a) Prove that $\mathrm{P}(\mathrm{E}) \cap \mathrm{P}(\mathrm{F})=\mathrm{P}(\mathrm{E} \cap \mathrm{F})$
(b) Prove that $\mathrm{P}(\mathrm{E}) \cup \mathrm{P}(\mathrm{F}) \subseteq \mathrm{P}(\mathrm{E} \cup \mathrm{F})$

