
MATH 201              Solutions:  TEST II 

 

 

  

Instructions:   Answer any 9 of the following 12 problems.  You may answer more 

than 9 to earn extra credit. 

 

1.   Let a be an integer.  Prove that a3 + a2 + a is even if and only if a is even. 

 

We separate this “if and only if” proposition into two separate proofs. 

Part I:   Let a be given.  Assume the right-hand side of the assertion is true, that is,  

∃𝑡 ∈ 𝑍 a = 2t. 

Then a3 + a2 + a = (2t)3 + (2t)2 + (2t) = 2(4t3 + 2t2 + t).  

Since 4t3 + 2t2 + t is an integer, we have proven that a3 + a2 + a is even. 

 

Part II:   We will argue by proving the contrapositive.  Assume the right-hand side of the assertion is true, 

that is, toward this end, assume that we are given an odd number a.  Then ∃𝑠 ∈ 𝑍  a = 2s + 1.   

Now, using algebra,  



a3 + a2 + a =  

(2s + 1)3 + (2s + 1)2 + (2s + 1) =  

8s3 + 12s2 + 6s + 1 =  

2(4s3 + 6s2 + 3s) + 1.  

Since 4s3 + 6s2 + 3s is an integer, a3 + a2 + a is odd. 

Hence the contrapositive has been verified. 

   

2. Prove that if a ≡ 𝒃 (𝒎𝒐𝒅 𝒎)𝒂𝒏𝒅 𝒄 ≡ 𝒅 (𝒎𝒐𝒅 𝒎) 𝒕𝒉𝒆𝒏 𝒂𝒄 ≡ 𝒃𝒅 (𝒎𝒐𝒅 𝒎). 

 
Proof:    Since a ≡ 𝑏 (𝑚𝑜𝑑 𝑚), ∃𝑘 ∈ 𝑍   𝑎 − 𝑏 = 𝑘𝑚. 

Similarly, since c ≡ 𝑑 (𝑚𝑜𝑑 𝑚), ∃𝑞 ∈ 𝑍  𝑐 − 𝑑 = 𝑞𝑚. 

Now a = b + km, and c = d + qm 

Thus ac = (b + km) (d + gm) = bd + (dk + bg + gkm)m  

Letting s = dk + bg  + gkm  

So ac = bd + sm.   

This is the result we seek:   𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑚). 
 

3. What, if anything, is wrong with this proof?  Select an answer and explain!  (No explanation 

results in no credit.) 

 

 



Select an answer and explain. 

 

 m – 1 is not necessarily a positive integer, so the third paragraph is wrong.   
That is, if m = 1, then m – 1 = 0 and so m would still be declared as the smallest 
integer in S. 

 

 
 

4. Suppose that we wish to prove that any amount of postage greater than or equal to K cents can 

be formed using only 4 cent and 5 cent stamps. 

 

(a)  What is the smallest value of K that is appropriate? 

Answer:   Testing small values of K, we quickly realize that k = 1, 2, 3, 6, 7 are impossible.  

So we conjecture that K = 8 is the smallest positive that is appropriate. 

Of course, we cannot be certain until we prove the result in 4(b). 

 

(b)  Prove the result using strong induction. 

Proposition:  Let n ≥ 8.    Define  

P(n):  n cents postage can be formed using only 4 cent and 5 cent stamps. 

Proof:    

Base case:  If n = 8:   two 4 cent stamps. 

If n = 9:   one 4 cent stamp and one 5 cent stamp. 

If n = 10:  two 5 cent stamps 

Inductive step:  We know from the base case that P(n) is true for n = 8, 9, and 10.   

Let n ≥ 10 be fixed. 



Our inductive hypothesis is P(n):  Assume that P(k) is true for 10 ≤ k ≤ n. 

Now consider P(n + 1):  We know that P(n – 2) is true by our inductive hypothesis. 

So we add one 3 cent stamp to the set of stamps of P(n – 2).  We now have n + 1 cents in postage 

stamps. 

 

5.  Prove that √2
3

 is irrational.   

Proof:  We will use the method of contradiction.  

We begin by assuming √2
3

 is rational.  That is, ∃ 𝑝, 𝑞 ∈ 𝑍 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 √2
3

=  
𝑝

𝑞
.    

Without loss of generality, we assume that p and q are positive integers with no common positive 

factor other than 1.  

Now, √2
3

=  
𝑝

𝑞
  ⇒ 𝑝3 = 𝑞 √2

3
 

⟹ 𝑝3 =  2𝑞3     (equation *) 

Hence p3 is even.  This implies that p is even. 

So ∃𝑡 ∈ 𝑍  𝑝 = 2𝑡. 

Substituting in equation * we find that  (2𝑡)3 = 2𝑞3. 

Hence q3 = 4t3.    

Now this means that q3 is even.  This implies that q is even. 

Since 2 is a divisor of p and of q, we have a contradiction. 

  

 

6. Prove:  If you choose any five numbers from the integers 1 to 8, then two of them must add up 

to nine.     

Hint: Every number can be paired with another to sum to nine: for example, 2 and 7.  How many 

such pairs are there?  Now use the pigeon-hole principle. Be sure to identify the pigeons as well as 

the pigeon-holes. 

 

Solution:  Consider the 4 pairs {1, 8}, {2, 7}, {3, 6}, {4, 5}.  These will be the pigeon-holes. 

Let the 5 chosen numbers serve as the pigeons.  Each pigeon will fly to the pigeon hole that 

contains its number.   The pigeon hole principle asserts that two pigeons must land in the same 

pigeon hole.  This pigeon hole now contains two numbers that add up to 9. 



7.  Suppose that hot dog buns come in packages of 34, and hot dogs come in packages of 8. 

 
Hint:    Consider 34 (mod 8) 

 

Solution:  Let x be the number of hot dog buns required and y be the number of hot dog packages.  Now 

34x must be a multiple of 8, for there to be no left-over hot dogs.  In other words, we must solve the 

equation 34x = 8y. 

Now, working mod 8:     2x ≡ 0 (mod 8). 

The smallest positive solution to this equation is x = 4. 

Checking, we see that 4 packages of hot dog buns and 17 packages of hot dogs is the desired minimum. 

 

8.   (a)  Compute  32017 (mod 11).  Show your work! 

Solution:  Using Fermat’s Little Theorem, we know that 310 ≡ 1 (mod 11). 

Thus 32017 = (310)201 (37) ≡ (1)201 (37) =  37 = (81)(27) ≡ 4 (5) = 20 ≡ 9 (mod 11). 

 

(b)  Find the remainder when (46)(23)  is divided by 7.  A calculator solution will earn no credit. 

Solution:   (46)(23) ≡  (4)(2) = 8  ≡ 1 (mod 7) 

 

9.  Find a counterexample for each of the following statements: 

(a) All prime numbers are odd. 

Let p = 2 

(b) If n is an integer for which n5 – n is even, then n is even. 

Let n = 1.   Then n5 – n = 0 is an even number, yet 1 is odd. 

(c) If s and t are positive irrational numbers, then s + t is irrational. 

Let s = 1 +  √2  𝑎𝑛𝑑 𝑡 =  1 −  √2.   Then s + t = 2, a rational number. 

 



(d) If s and t are positive irrational numbers for which 𝑠 ≠ 𝑡, then st is irrational.   

Let s = 1 +  √2  𝑎𝑛𝑑 𝑡 =  1 −  √2.   Then st = -1, a rational number. 

(e) Any two multiples of 3 are congruent to each other (mod 6). 

Let a = 0 𝑎𝑛𝑑 𝑏 = 3.  𝑇ℎ𝑒𝑛 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3.   

𝑩𝒖𝒕  0 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑡𝑜 3 (𝑚𝑜𝑑 6) 𝑠𝑖𝑛𝑐𝑒 3 − 0 = 3, 

 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 6. 

 

10.    Prove the that the square a2 of an integer a must be of the form 4K or 4K+1.    

 

Proof:    Let 𝑎 ∈ 𝑍 𝑏𝑒 𝑓𝑖𝑥𝑒𝑑.   We consider two cases. 

Case I:    a is even 

If a is even then ∃𝑐 ∈ 𝑍  𝑎 = 2𝑐. 

𝐴𝑛𝑑 𝑠𝑜 𝑎2 = 4𝑐2. 

Let K = 𝑐2.  𝑇ℎ𝑒𝑛 𝑎2 = 4𝐾. 

Case 2:   a is odd 

If a is odd then ∃𝑑 ∈ 𝑍  𝑎 = 2𝑑 + 1. 

𝐴𝑛𝑑 𝑠𝑜 𝑎2 = 4𝑑2 + 4d + 1 = 4(𝑑2 + 𝑑) +1 

Let L = 𝑑2 + 𝑑.    𝑇ℎ𝑒𝑛 𝑎2 = 4𝐿 + 1  

Hence, since every integer is either odd or even, the stated result has been  proven. 

11.  Fix the following proof so that it will earn full-credit from your grader. 

Proposition:   For all n ≥ 1, 
(3𝑛)!

(3!)𝑛  is an integer. 

Proof:  We will use the method of mathematical induction. 

Let us imagine that there exists an integer n for which  
(3𝑛)!

(3!)𝑛  𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

Now     
  (3𝑛+1)!

(3!)𝑛+1 = 
(3𝑛)!(1!)

((3!)𝑛)1 =  
  (3𝑛+1)!

(3!)𝑛+1    =    
(3𝑛)!

(3!)𝑛  

 𝑤ℎ𝑖𝑐ℎ 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑜𝑚 𝑜𝑢𝑟 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛. 

Thus we have proven the case n + 1 and the induction is complete.  



 

Solution: This “proof” contains many errors, but the result is correct.  

Proposition:   For all n ≥ 1, 
(𝟑𝒏)!

(𝟑!)𝒏  is an integer. 

Proof:  For each n   1, let Hn represent the statement 
(𝟑𝒏)!

(𝟑!)𝒏 is an integer. 

We will use the method of mathematical induction. 

Base case:   n = 1:   
(𝟑(𝟏))!

(𝟑!)𝟏  = 1  Z. 

Inductive step:  Assume that n  1 is given and that Hn is true. 

Now (3(n+1))!/(3!)n+1 = (3n + 3)! / (3!)n+1  = (
(3𝑛)!

(3!)𝑛) (
(3𝑛+1)(3𝑛+2)(3𝑛+3)

3!
) = 

 (
(3𝑛)!

(3!)𝑛) (𝑛 + 1)
(3𝑛+1)(3𝑛+2)

2
 

Now, by inductive hypothesis, (
(3𝑛)!

(3!)𝑛) is an integer.  Furthermore, the product of two consecutive 

integers is even.   𝐻𝑒𝑛𝑐𝑒 2 𝑖𝑠 𝑎 𝑑𝑖𝑣𝑖𝑠𝑜𝑟 𝑜𝑓 (𝑛 + 1)(3𝑛 + 1)(3𝑛 + 2) 

Thus (3n+1)(3n+2) is divisible by 2, and we have proven Hn+1.   

 

12.  Proposition: For all n ∈ N, 4|(32n + 7).  

Proof:    For n ∈ N let Sn be the statement 4|(32n + 7).  

Base Case:   n=1 is true, since 32 + 7 = 16 is divisible by 4.  

Inductive Step: 

For a given k ≥ 1, assume that the proposition is true for n =k, so that 4|(32k + 7). Then 32k + 7 = 4L for 

some L∈ Z.  

Now, 32(k+1) + 7 = 9(32k) + 7 = 8(32k) + 32k + 7 = 8(32k) + 4L = 4(2(32k) + L).  

So 4|(32(k+1) + 7), and we see that the proposition is true for n = k+1.  

Therefore, by the principle of mathematical induction, the proposition is true for all n ∈ N.  

 



  Which of the following statements is correct? 

The proposition is false but the proof is correct.  

The proof contains arithmetic mistakes which make it incorrect.  

The proof incorrectly assumes what it is trying to prove.  

 The proof is a correct proof of the stated result.  

   None of the above is true. 

 

 

 

 

 

 

 

 

 

 

 

 

A first fact should surprise us, or rather would surprise us if we were not used to it. 

How does it happen there are people who do not understand mathematics?    If 

mathematics invokes only the rules of logic, such as are accepted by all normal 

minds ... how does it come about that so many persons are here refractory?  

 

 -   Henri Poincaré, quoted in The World of Mathematics, by J. R. Newman.  

 


