QUESTIONS FOR CLASS DISCUSSION (14 JANUARY)

VECTORS IN 2-SPACE AND 3-SPACE

Concentric spheres drawn with Mathematica

1. Find the distance between the two points $(3,-1,4)$ and $(5,5,-3)$.
2. Find the equation of a sphere with center $(1,2,3)$ and radius 4.
3. Consider the sphere defined by the equation

$$
(x-2)^{2}+(y-5)^{2}+(z-8)^{2}=8
$$

Find the equation of the sphere centered at $(7,17,21)$ that is tangent to the given sphere. Hint: Begin with a picture.
4. Do the two spheres $(x-1)^{2}+(y-2)^{2}+(z-2)^{2}=4$ and

$$
(x+1)^{2}+(y+2)^{2}+(z-3)^{2}=4 \text { intersect? Why? }
$$

5. Let $\mathbf{v}=\mathbf{i}+2 \mathbf{j}$ and $\mathbf{w}=4 \mathbf{i}+3 \mathbf{j}$. Compute $\mathbf{v}+\mathbf{w}$ and display its geometrical meaning.
6. Referring to problem (5), compute the norm of \mathbf{v}, the norm of \mathbf{w}, and the norm of $\mathbf{v}+\mathbf{w}$.
7. Find a unit vector in the direction of $\mathbf{v}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$.
8. Express the vector from the point $\mathrm{A}=(2,3,4)$ to the point $\mathrm{B}=(7,1,0)$ as a vector in standard position.
9. Explain the geometric meaning of scalar multiplication of a vector.
10. Find all vectors in 2 -space that have norm of 13 and \mathbf{i}-component of 5 .
11. Find the equation of the line L passing through $(1,0,0)$ in the direction of \mathbf{j}.
12. Find the equation of the line L passing through $(3,-1,2)$ in the direction of $2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$.
13. Do the two lines $L_{1}(t)=(t,-6 t+1,2 t-8)$ and $L_{2}(t)=(3 t+1,2 t, 0)$ intersect? Justify your answer!
14. Does the line $L(t)=(2,-1,2)+t(2,3,1)$ intersect the plane $5 x-3 y-z=6$? If so, where?
15. Normalize the vector $5 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k}$

Exercises from Stuart:

1. Suppose you start at the origin, move along the x-axis a distance of 4 units in the positive direction, and then move downward a distance of 3 units. What are the coordinates of your position?
2. Sketch the points $(1,5,3),(0,2,-3),(-3,0,2)$, and $(2,-2,-1)$ on a single set of coordinate axes.
3. Which of the points $A(-4,0,-1), B(3,1,-5)$, and $C(2,4,6)$ is closest to the $y z$-plane? Which point lies in the $x z$-plane?
4. What are the projections of the point $(2,3,5)$ on the $x y-, y z$-, and $x z$-planes? Draw a rectangular box with the origin and $(2,3,5)$ as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Find the length of the diagonal of the box.
5. What does the equation $x=4$ represent in \mathbb{R}^{2} ? What does it represent in \mathbb{R}^{3} ? Illustrate with sketches.
6. What does the equation $y=3$ represent in \mathbb{R}^{3} ? What does $z=5$ represent? What does the pair of equations $y=3, z=5$ represent? In other words, describe the set of points (x, y, z) such that $y=3$ and $z=\mathbf{5}$. Illustrate with a sketch.
7. Describe and sketch the surface in \mathbb{R}^{3} represented by the equation $x+y=2$.

"...treat Nature by the sphere, the cylinder, and the cone..."
