MATH 351: QUESTIONS FOR CLASS DISCUSSION, $12^{\text {TH }}$ NOVEMBER

BOLZANO'S THEOREM; INTERMEDIATE VALUE THEOREM

1. (Review) Prove that, for any real numbers a and $b, \max \{a, b\}=\frac{a+b+|a-b|}{2}$.

What is the corresponding statement for $\min \{a, b\}$?
2. Prove that if f is continuous then $|\mathrm{f}(\mathrm{x})|$ is continuous as well.
3. (Review) Find four continuous functions $\mathrm{y}=\mathrm{f}(\mathrm{x})$ satisfying $\mathrm{y}^{2}=\mathrm{x}^{2}$.
4. (Review) Write the negation of the statement: $f(x)$ is continuous at $x=p$
5. (Review) Let $f(x)=\left\{\begin{array}{c}1 \text { if } x=\frac{1}{n} \text { for } n \in N \\ 0 \text { otherwise }\end{array}\right.$

Prove, using the Sequential Continuity criterion, that $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$.
6. Prove the Positivity Theorem for continiuous functions.
7. [S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer (2016)] Let f be a function defined on \mathbf{R}.
(a) Let's say f is onetinuous at c if for all $\varepsilon>0$ we can choose $\delta=1$ and it follows that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is onetinuous on all of R .
(b) Let's say f is equaltinuous at c if for all $\varepsilon>0$ we can choose $\delta=\varepsilon$ and it follows that $\mid f(x)-$ $f(c) \mid<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is equaltinuous on R but is nowhere onetinuous, or explain why there is no such function.
(c) Let's say f is lesstinuous at c if for all $\varepsilon>0$ we can choose $0<\delta<\varepsilon$ and it follows that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is lesstinuous on \mathbf{R} that is nowhere equaltinuous, or explain why there is no such function.
(d) Is every lesstinuous function continuous? Is every continuous function lesstinuous? Explain.
8. Assume that f and g are defined on all of \mathbf{R}, and that $\lim _{x \rightarrow p} f(x)=q$ and $\lim _{x \rightarrow q} g(x)=r$.

Give a counterexample to $\lim _{x \rightarrow p} g(f(x))=r$
9. State and prove Bolzano's theorem for a continuous function on a compact interval.
10. Show that the Intermediate Value Theorem is a consequence of Bolzano's theorem.
11. State the Intersection Principle.
12. Apply the intermediate value theorem to show that the equation $x^{5}-3 x^{2}=-1$ has a solution in the interval $[0,1]$.
13. Apply the intermediate value theorem to show that the equation $\sqrt{x^{6}+5 x^{4}+9}=3.5$ has a solution in the interval $[0,1]$.
14. Prove that $f(x)=9 \sin x-x^{5}=1$ has at least one solution.
15. State the Intersection Principle.
16. State the Intermediate Value Property.
17. Prove that if $f(x)$ is strictly monotone and has the IVP on $[a, b]$, then f is continuous on [a, b].
18. State and sketch the proof of the Inverse Function Theorem.

19. Define sequentially compact for a subset of \mathbf{R}.
20. Prove the Sequential Compactness theorem.

