MATH 351: QUESTIONS FOR CLASS DISCUSSION, $16^{\text {TH }}$ NOVEMBER

MAXIMUM THEOREM; CONTINUOUS MAPPPING THEOREM
 REVIEW FOR TEST III

1. (Review) Find four continuous functions $y=f(x)$ satisfying $y^{2}=x^{2}$.
2. (Review) Let $f(x)=\left\{\begin{array}{c}1 \text { if } x=\frac{1}{n} \text { for } n \in N \\ 0 \text { otherwise }\end{array}\right.$

Prove, using the Sequential Continuity criterion, that $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=0$.
3. (Review) [S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer (2016)]

Let f be a function defined on \mathbf{R}.
(a) Let's say f is onetinuous at c if for all $\varepsilon>0$ we can choose $\delta=1$ and it follows that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is onetinuous on all of R .
(b) Let's say f is equaltinuous at c if for all $\varepsilon>0$ we can choose $\delta=\varepsilon$ and it follows that $\mid f(x)-$ $f(c) \mid<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is equaltinuous on R but is nowhere onetinuous, or explain why there is no such function.
(c) Let's say f is lesstinuous at c if for all $\varepsilon>0$ we can choose $0<\delta<\varepsilon$ and it follows that $|f(x)-f(c)|<\varepsilon$ whenever $|x-c|<\delta$. Find an example of a function that is lesstinuous on \mathbf{R} that is nowhere equaltinuous, or explain why there is no such function.
(d) Is every lesstinuous function continuous? Is every continuous function lesstinuous? Explain.
4. (Review) Assume that f and g are defined on all of \mathbf{R}, and that $\lim _{x \rightarrow p} f(x)=q$ and $\lim _{x \rightarrow q} g(x)=r$.

Give a counterexample to $\lim _{x \rightarrow p} g(f(x))=r$
5. State the Intermediate Value Property.
6. Prove that if $f(x)$ is strictly monotone and has the IVP on $[a, b]$, then f is continuous on $[a, b]$.
7. State and sketch the proof of the Inverse Function Theorem.
8. Define sequentially compact for a subset of \mathbf{R}. Give examples of sets that are not sequentially compact.
9. State and prove the Sequential Compactness theorem.
10. State and prove the Boundedness theorem.
11. State and prove the Maximum theorem.
12. Give an example of a continuous function on $(0,1]$ with no max nor min on this interval, but which does not have the limit ∞ or $-\infty$ as $x \rightarrow 0^{+}$.

13. State the Continuous mapping theorem

