MATH 351: QUESTIONS FOR CLASS DISCUSSION, $26^{\text {TH }}$ NOVEMBER MAPPINGS; UNIFORM CONTINUITY

\#GI《INGTUESDAY" November 27, 2018

* Continuous Functions on Compact Intervals (sections 3.4, 13.5)

1. (Review) State the Maximum Theorem for continuous functions on compact sets.
2. (Review) Explain why the Maximum Theorem implies the Boundedness Theorem.
3. (Review) Give an example of a continuous function on $(0,1]$ with neither maximum nor minimum on this interval, but which does not have the limit ∞ or $-\infty$ as $x \rightarrow 0^{+}$.
4. (Review) What is meant by the image of S under the map f ?
5. Find $f(S)$ for each of the following:
(a) $f(x)=x^{2} ; \quad S=(1,4]$
(b) $f(x)=\ln x ; S=[1, e]$.
(c) $\mathrm{f}(\mathrm{x})=\sin \mathrm{x} ; \mathrm{S}=(\pi / 4,9 \pi / 4)$
(d) $\quad f(x)=\sin \frac{1}{x} ; \quad S=(0,1)$
6. State and prove the Continuous Mapping Theorem.
7. Find functions $f(x)$ and $g(x)$ such that
(a) $f([-1,1])=(-1,1)$
(b) $g\left(\left[0, \frac{\pi}{2}\right]\right)=[0, \infty)$

What general observation can you make about such functions f and g ?
8. Does the Continuous Mapping Theorem imply both the IVT and the Maximum theorem?
9. (Abbott, Understanding Analysis) Give an example of each of the following, or provide a brief argument why the request is impossible.
(a) A continuous function defined on $[0,1]$ with range $(0,1)$.
(b) A continuous function defined on $(0,1)$ with range $[0,1]$.
(c) A continuous function defined on $(0,1]$ with range $(0,1)$.
(d) If f is continuous on a bounded set A , then $\mathrm{f}(\mathrm{A})$ is bounded.
(e) If f is defined on R, and $f(K)$ is compact whenever K is compact, then f is continuous on R.
(f) If f is continuous on [a, b], with $\mathrm{f}(\mathrm{x})>0$ for all $a \leq x \leq b$, then $\frac{1}{f}$ is bounded on [a, b]. (Meaning $\frac{1}{f}$ has bounded range.)
10. Define uniform continuity.
11. Prove, using only the definition, that $f(x)=x^{2}+1$ is uniformly continuous on [0,2] but not uniformly continuous on $[0, \infty]$.
12. Prove that $\mathrm{g}(\mathrm{x})=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.
13. Show that $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}$ is not uniformly continuous on $[0, \infty)$.
14. State the negation of uniform continuity (aka sequential criterion for absence of uniform convergence).
15. Show that $f(x)=\sin \frac{1}{x}$ is not uniformly continuous $(0,1)$.
16. State and prove the Uniform Continuity Theorem.
17. Prove, using only the definition, that $f(x)=x^{2}+1$ is uniformly continuous on $[0,2]$ but not uniformly continuous on $[0, \infty]$.

