MATH 351: CLASS DISCUSSION, 10 OCTOBER 2018

1. Review: What is the Cauchy criterion for convergence?
2. Given a sequence $\left\{a_{n}\right\}$ that has the property $\left|a_{n}-a_{n+1}\right| \leq \frac{1}{2^{n}}$. for all n. Must it follow that $\left\{a_{n}\right\}$ be Cauchy?
3. Show directly that $b_{n}=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$ a Cauchy sequence.

Hint: First note that $\frac{1}{n!} \leq \frac{1}{2^{n}}$ for all $n \geq 4$.
4. Consider the following statement: "Given any $\epsilon>0, a_{n+1} \approx a_{\epsilon}$ for $\mathrm{n} \gg 1$ "

Give an example of an increasing sequence that satisfies this condition, yet is not a Cauchy sequence.
5. Given a sequence $\left\{a_{j}\right\}$ that has the property $\left|a_{n}-a_{k}\right| \leq \frac{1}{n+k}$ for all n and k. Prove that $\left\{a_{n}\right\}$ is Cauchy.
6. Definitions: Let $S \subseteq \mathbb{R}$.
(a) An upper bound for S is \qquad .
(b) S is bounded above if \qquad .
(c) The maximum of S is \qquad _.
7. Definition: Let $S \subseteq \mathbb{R}$. The supremum of S (abbreviated sup S, aka lub S) is \qquad .
8. Let $S \subseteq \mathbb{R}$. Prove that:
(a) If $\max \mathrm{S}$ exists, then it is unique.
(b) If $\sup S$ exists, then it is unique.
9. [exercises from a graduate Finance program]
(a) State what it means for a sequence not to be Cauchy. Use quantifiers.
(b) Prove that if $\left\{a_{j}\right\}$ is Cauchy then $\left\{a_{j}^{2}\right\}$ is also Cauchy.
(c) Give an example of a Cauchy sequence $\left\{a_{j}{ }^{2}\right\}$ such that $\left\{a_{j}\right\}$ is not Cauchy.
10. Prove the Completeness Property for sets, viz.

If $S \subseteq \mathbb{R}$ is non-empty and bounded above, then $\sup S$ exists.
11. Introduce infimum of S (aka glb)
12. Is there any sequence of numbers a_{1}, a_{2}, \ldots such that the set $\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded, but the sequence has no maximal and no minimal elements?
13. Find the supremum for the following set and prove that your answer is correct. $\mathrm{S}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}\right\}$
14. Consider the set $A=\left\{(-1)^{n} n: n \in N\right\}$. (a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A ?
(c) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A ?
15. (Mattuck, Example 6.4) Consider the recursively defined sequence $\left\{a_{j}\right\}$, where $a_{1}=1$ and $a_{n+1}=\frac{1}{a_{n}+1} \forall n \geq 1$. Prove that this is a Cauchy sequence and determine its limit.
16. Consider the set $\mathrm{A}=\{\mathrm{x} \in \mathbf{R}: 1<\mathrm{x}<2\}$.
(a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A ?
(b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A ?
15. Prove that if $S \subset R$ is non-empty and bounded below, then it has an infimum.
16. (UC, Berkeley) For $S \subset R$ a non-empty subset that is bounded above and $x \in R$, let $x S$ be the set $\{x s: s \in S\}$.
(a) Show that if $x>0$, then $\sup (x S)=x \sup (S)$.
(b) Show that if $x<0$, then $\inf (x S)=x \inf (S)$.
17. (UC, Berkeley) Let $\mathrm{S}, \mathrm{T} \subseteq \mathbf{R}$ be non-empty subsets that are bounded from above, and define
$S+T=\{s+t: s \in S, t \in T\}$.
Show $\sup (S+T)=\sup (S)+\sup (T)$. Then, use this to prove that if $x \in R$ and $S+x$ is the set $\{s+x: s \in S\}$, then $\sup (S+x)=\sup (S)+x$.

Additional Exercises (S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer)

1. Decide whether each of the following statements is True or False. Provide either a brief justification or a counterexample.
(a) If every proper subsequence of $\left\{x_{n}\right\}$ converges, then $\left\{x_{n}\right\}$ converges as well.
(b) If $\left\{a_{n}\right\}$ contains a divergent subsequence, then $\left\{a_{n}\right\}$ diverges.
(c) If $\left\{a_{n}\right\}$ is bounded and diverges, then there exist two subsequences of $\left\{a_{n}\right\}$ that converge to different limits.
(d) If $\left\{a_{n}\right\}$ is monotone and contains a convergent subsequence, then $\left\{a_{n}\right\}$ converges..
2. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences, then one easy way to prove that $\left\{a_{n}+b_{n}\right\}$ is Cauchy is to use the Cauchy criterion. Explain!
(a) Give a direct argument that $\left\{a_{n}+b_{n}\right\}$ is Cauchy that does not use the Cauchy criterion.
(b) Do the same for the product, $\left\{\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right\}$.
3. Let $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ be Cauchy sequences. Decide whether or not each of the following is Cauchy, justifying each conclusion.
(a) $\mathrm{c}_{\mathrm{n}}=\left|\mathrm{a}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}}\right|$
(b) $\mathrm{c}_{\mathrm{n}}=(-1)^{n} \mathrm{a}_{\mathrm{n}}$
(c) $\mathrm{c}_{\mathrm{n}}=\llbracket \mathrm{a}_{\mathrm{n}} \rrbracket$ where $\llbracket x \rrbracket$ refers to the greatest integer less than or equal to x .
4. Consider the following (invented) definition: A sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is $\boldsymbol{p s e u d o}$-Cauchy if, for all $\epsilon>0$, there exists an N such that if $n \geq N$, then $\left|a_{n+1}-a_{n}\right|<\epsilon$. Decide which one of the following two statements is True. Provide a counterexample for the other.
(a) Pseudo-Cauchy sequences are bounded.
(b) If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{b}_{n}\right\}$ are pseudo-Cauchy, then $\left\{\mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right\}$ is pseudo-Cauchy as well.

