MATH 351: CLASS DISCUSSION, 10 OCTOBER 2018

Cauchy sequences & supremum, infimum of sets

- 1. Review: What is the *Cauchy criterion* for convergence?
- 2. Given a sequence $\{a_n\}$ that has the property $|a_n a_{n+1}| \le \frac{1}{2^n}$. for all n. Must it follow that $\{a_n\}$ be Cauchy?
- 3. Show directly that $b_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$ a Cauchy sequence. *Hint:* First note that $\frac{1}{n!} \le \frac{1}{2^n}$ for all $n \ge 4$.
- 4. Consider the following statement: "Given any $\epsilon > 0$, $a_{n+1} \stackrel{\approx}{\epsilon} a_n$ for n >>1" Give an *example* of an increasing sequence that satisfies this condition, yet is not a Cauchy sequence.
- 5. Given a sequence $\{a_j\}$ that has the property $|a_n a_k| \le \frac{1}{n+k}$ for all *n* and *k*. Prove that $\{a_n\}$ is Cauchy.
- 6. **Definitions:** Let $S \subseteq \mathbb{R}$.
 - (a) An *upper bound* for S is _____.
 - (b) S is *bounded above* if _____.
 - (c) The *maximum* of S is _____.

7. **Definition:** Let $S \subseteq \mathbb{R}$. The *supremum* of S (abbreviated sup S, aka lub S) is _____

- 8. Let $S \subseteq \mathbb{R}$. Prove that:
 - (a) If max S exists, then it is unique.
 - (b) If sup S exists, then it is unique.
- 9. [exercises from a graduate Finance program]
 - (a) State what it means for a sequence not to be Cauchy. Use quantifiers.
 - (b) Prove that if $\{a_i\}$ is Cauchy then $\{a_i^2\}$ is also Cauchy.
 - (c) Give an example of a Cauchy sequence $\{a_j^2\}$ such that $\{a_j\}$ is not Cauchy.
- 10. Prove the Completeness Property for sets, viz.
 - If $S \subseteq \mathbb{R}$ is non-empty and bounded above, then sup S exists.

- 11. Introduce *infimum* of S (*aka* glb)
- 12. Is there any sequence of numbers a_1, a_2, \ldots such that the set $\{a_1, a_2, \ldots\}$ is bounded, but the sequence has no maximal and no minimal elements?
- 13. Find the supremum for the following set and prove that your answer is correct. S = $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}\right\}$
- 14. Consider the set $A = \{ (-1)^n n : n \in N \}$. (a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A?

(c) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A?

- 15. (Mattuck, Example 6.4) Consider the recursively defined sequence $\{a_j\}$, where $a_1 = 1$ and $a_{n+1} = \frac{1}{a_n+1}$ $\forall n \ge 1$. *Prove that this is a Cauchy sequence and determine its limit.*
- 16. Consider the set $A = \{x \in \mathbf{R} : 1 < x < 2\}$.

(a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A?

(b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A?

- 15. Prove that if $S \subset R$ is non-empty and bounded below, then it has an infimum.
- 16. (UC, Berkeley) For S ⊂ R a non-empty subset that is bounded above and x ∈ R, let xS be the set {xs: s ∈ S}.
 (a) Show that if x > 0, then sup (xS) = x sup (S).
 - (b) Show that if x < 0, then inf (xS) = x inf (S).

17. (UC, Berkeley) Let S, $T \subseteq \mathbf{R}$ be non-empty subsets that are bounded from above, and define $S + T = \{s + t: s \in S, t \in T\}.$

Show sup(S + T) = sup(S) + sup(T). Then, use this to prove that if $x \in R$ and S + x is the set $\{s+x: s \in S\}$, then sup(S + x) = sup(S) + x.

Additional Exercises (S. Abbott, Understanding Analysis, 2nd edition, Springer)

- 1. Decide whether each of the following statements is True or False. Provide either a brief justification or a counterexample.
 - (a) If every proper subsequence of $\{x_n\}$ converges, then $\{x_n\}$ converges as well.
 - (b) If $\{a_n\}$ contains a divergent subsequence, then $\{a_n\}$ diverges.
 - (c) If {a_n} is bounded and diverges, then there exist two subsequences of {a_n} that converge to different limits.
 - (d) If $\{a_n\}$ is monotone and contains a convergent subsequence, then $\{a_n\}$ converges.
- 2. If $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences, then one easy way to prove that $\{a_n + b_n\}$ is Cauchy is to use the Cauchy criterion. Explain!
 - (a) Give a direct argument that $\{a_n + b_n\}$ is Cauchy that does not use the Cauchy criterion.
 - (b) Do the same for the product, $\{a_nb_n\}$.

- 3. Let $\{a_n\}$ and $\{b_n\}$ be Cauchy sequences. Decide whether or not each of the following is Cauchy, justifying each conclusion.
 - (a) $c_n = |a_n b_n|$
 - (b) $c_n = (-1)^n a_n$
 - (c) $c_n = [a_n]$ where [x] refers to the greatest integer less than or equal to x.
- 4. Consider the following (invented) definition: A sequence {a_n} is *pseudo-Cauchy* if, for all ε > 0, *there exists an N such that if n ≥ N, then* |a_{n+1} a_n| < ε. Decide which one of the following two statements is True. Provide a counterexample for the other.
 - (a) Pseudo-Cauchy sequences are bounded.
 - (b) If $\{a_n\}$ and $\{b_n\}$ are pseudo-Cauchy, then $\{a_n + b_n\}$ is pseudo-Cauchy as well.

www.MaxAndBeyond.com

© 2013 Yamaguchi and Paul