MATH 351: CLASS DISCUSSION, 12 OCTOBER 2018

Completeness Theorem

lim sup; lim inf

- 1. Review: If $\{a_n\}$ and $\{b_n\}$ are Cauchy sequences, then one easy way to prove that $\{a_n + b_n\}$ is Cauchy is to use the Cauchy criterion. Explain!
 - (a) Give a direct argument that $\{a_n + b_n\}$ is Cauchy that does not use the Cauchy criterion.
 - (b) Do the same for the product, $\{a_nb_n\}$.
- 2. **Definition:** Let $S \subseteq \mathbb{R}$ be non-empty. The *supremum* of S (abbreviated sup S, *aka* lub S) is _____
- 3. Let $S \subseteq \mathbb{R}$ be non-empty. Prove that:
 - (a) If max S exists, then it is unique.
 - (b) If sup S exists, then it is unique.
- 4. [exercises from a graduate Finance program]
 - (a) State what it means for a sequence not to be Cauchy. Use quantifiers.
 - (b) Prove that if $\{a_i\}$ is Cauchy then $\{a_i^2\}$ is also Cauchy.
 - (c) Give an example of a Cauchy sequence $\{a_j^2\}$ such that $\{a_j\}$ is not Cauchy.
- 5. Prove the Completeness Property for sets, viz.
 - If $S \subseteq \mathbb{R}$ is non-empty and bounded above, then sup S exists.
- 6. Define *infimum* of S (*aka* glb)
- 7. Is there any sequence of numbers a_1, a_2, \ldots such that the set $\{a_1, a_2, \ldots\}$ is bounded, but the sequence has no maximal and no minimal elements?
- 8. Find the supremum for the following set and prove that your answer is correct. S = $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}\right\}$
- 9. Consider the set $A = \{ (-1)^n n : n \in \mathbb{N} \}.$
 - (a) Show that A is bounded above. Find the supremum of A. Is this supremum a maximum of A?
 - (b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A?
- 10. (Mattuck, Example 6.4) Consider the recursively defined sequence $\{a_j\}$, where $a_1 = 1$ and $a_{n+1} = \frac{1}{a_n+1}$ $\forall n \ge 1$. Prove that this is a Cauchy sequence and determine its limit.
- 11. Consider the set $A = \{x \in \mathbf{R} : 1 < x < 2\}$.
 - (a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A?
 - (b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A?
- 12. Prove that if $S \subset R$ is non-empty and bounded below, then it has an infimum.
- 13. (UC, Berkeley) For $S \subset R$ a non-empty subset that is bounded above and $x \in R$, let xS be the set { $xs: s \in S$ }.
 - (a) Show that if x > 0, then sup $(xS) = x \sup (S)$.
 - (b) Show that if x < 0, then inf (xS) = x inf (S).
- 14. (UC, Berkeley) Let S, $T \subseteq \mathbf{R}$ be non-empty subsets that are bounded from above, and define

 $S + T = {s + t: s \in S, t \in T}.$

Show sup(S + T) = sup(S) + sup(T). Then, use this to prove that if $x \in R$ and S + x is the set $\{s+x: s \in S\}$, then sup(S + x) = sup(S) + x.

15. Find the max, min, sup, and inf of the following and justify each answer.

$$S = \left\{ \frac{2n+1}{n+1} \colon n \ge 1 \right\}$$

16. Find the max, min, sup, and inf of the following and justify each answer.

$$T = \left\{ \frac{n + (-1)^n n}{n+1} \colon n \ge 1 \right\}$$

17. (Purdue)

Compute the sup, inf, max and min (whenever these exist) for the following sets. ¹

(a) {1 + 1/n | n ∈ N}
(b) [0,2)
(c) {n²+15/n+1} | n ∈ N}
(d) {x | x ∈ Q and x² < 2}
(e) {y | y = x² - x + 1 and x ∈ ℝ}
(f) {x | x² - 3x + 2 < 0 and x ∈ ℝ}
(g) {1/n - 1/m | n, m ∈ N}
(h) {1 + (1+(-1)ⁿ)/n | n ∈ N}
(i) {1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, ...}. (This is a list of the fractions in the interval (0, 1). The pattern is that we list fractions by increasing value of the denominator. For a given value of denominator, we go from smallest to largest, omitting fractions which are not in reduced form.)

(j)
$$\{n/(1+n^2) \mid n \in \mathbb{N}\}$$

(k) $\{3n^2/(1+2n^2) \mid n \in \mathbb{N}\}$

(l)
$$\{n/(1-n^2) \mid n \in \mathbb{N}, n > 1\}$$

(r)
$$\{\frac{3n+1}{n+1} \mid n \in \mathbb{N}\}$$

(s)
$$\{n^{(-1)^n} | n \ge 1\}$$

- (m) $\{(1-2n^2)/3n^2 \mid n \in \mathbb{N}\}$ (n) $\{2n^2/(3n^2-1) \mid n \in \mathbb{N}\}$ (o) $\{3n/\sqrt{1+n^2} \mid n \in \mathbb{N}\}$ (p) $\{3/\sqrt{1+2n^2} \mid n \in \mathbb{N}\}$ (q) $\{\frac{n-1}{n^2+5} \mid n \in \mathbb{N}\}$
- 18. (Mattuck; 6.5.3) Assume that A and B are bounded non-empty subsets of R. Prove the following (for each part you can assume any of the preceding parts).

If c is a constant then we define $cA = \{ca \mid a \in A\}$.

Also, we define $A + B = \{a + b: a \in A, b \in B\}$.

(a)
$$A \subseteq B \Rightarrow \sup(A) \le \sup(B)$$

- (b) $A \subseteq B \Rightarrow \inf(A) \ge \inf(B)$
- (c) If c > 0, then sup $cA = c \sup A$
- (d) If c > 0, then inf ca = c inf A

(e)
$$\sup(-A) = -\inf A$$

(f) $inf(-A) = - \sup A$

- (g) $\sup(A + B) \le \sup A + \sup B$
- (h) $inf(A + B) \ge inf A + inf B$
- 19. Let $\{a_n\}$ be a bounded sequence. Define $\lim \sup a_n$ and $\lim \inf a_n$.
- 20. For each of the following sequences $\{a_n\}$, detemine $\limsup a_n$ and $\limsup a_n$.

(a)
$$a_n = (-1)^n$$

(b)
$$a_n = \cos \frac{n\pi}{2}$$

- (c) $a_n = (arc \tan n) \sin \frac{n\pi}{2}$
- 21. (challenge problem) Let $a_n = \cos \sqrt{t + n^2 \pi^2}$ for a fixed value of t > 0. Detemine lim sup a_n and lim inf a_n .
- 22. Determine $\limsup a_n$ and $\limsup inf a_n$ for each of the following sequences:
- Let $a_n = \frac{1+(-1)^n 2n}{1+3n}$. Determine $\limsup a_n$ and $\liminf a_n$.
- 23. Prove that $\limsup (a_n + b_n) \le \limsup (a_n + b_n)$. Give an example when equality does not hold.
- 24. Prove that $\liminf a_n + \liminf b_n \le \liminf (a_n + b_n)$ Give an example when equality does not hold.
- 25. State and prove results similar to those of problem 14 for the product $\{a_nb_n\}$ of two sequences with *positive* terms.
- 26. Let $\{a_n\}$ be the sequence 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1 and let
- $\{b_n\}$ be the sequence 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0 ... Find:
- (a) $\liminf a_n + \liminf b_n$
- (b) $\liminf (a_n + b_n)$
- (c) $\liminf a_n + \limsup b_n$
- (d) $\limsup (a_n + b_n)$
- (e) $\limsup a_n + \limsup b_n$
- 27. Prove the Proposition: If $\limsup a_n = s^*$, then there exists a subsequence of $\{a_n\}$ that converges to s^* .