MATH 351: CLASS DISCUSSION, 12 OCTOBER 2018 Completeness Theorem

lim sup; lim inf

1. Review: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences, then one easy way to prove that $\left\{a_{n}+b_{n}\right\}$ is Cauchy is to use the Cauchy criterion. Explain!
(a) Give a direct argument that $\left\{a_{n}+b_{n}\right\}$ is Cauchy that does not use the Cauchy criterion.
(b) Do the same for the product, $\left\{\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right\}$.
2. Definition: Let $S \subseteq \mathbb{R}$ be non-empty. The supremum of S (abbreviated sup S, aka lub S) is \qquad .
3. Let $S \subseteq \mathbb{R}$ be non-empty. Prove that:
(a) If max S exists, then it is unique.
(b) If $\sup \mathrm{S}$ exists, then it is unique.
4. [exercises from a graduate Finance program]
(a) State what it means for a sequence not to be Cauchy. Use quantifiers.
(b) Prove that if $\left\{a_{j}\right\}$ is Cauchy then $\left\{a_{j}^{2}\right\}$ is also Cauchy.
(c) Give an example of a Cauchy sequence $\left\{a_{j}^{2}\right\}$ such that $\left\{a_{j}\right\}$ is not Cauchy.
5. Prove the Completeness Property for sets, viz.

If $S \subseteq \mathbb{R}$ is non-empty and bounded above, then sup S exists.
6. Define infimum of S (aka glb)
7. Is there any sequence of numbers a_{1}, a_{2}, \ldots such that the set $\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded, but the sequence has no maximal and no minimal elements?
8. Find the supremum for the following set and prove that your answer is correct. $\mathrm{S}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}\right\}$
9. Consider the set $\mathrm{A}=\left\{(-1)^{\mathrm{n}} \mathrm{n}: \mathrm{n} \in \mathbf{N}\right\}$.
(a) Show that A is bounded above. Find the supremum of A . Is this supremum a maximum of A ?
(b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A ?
10. (Mattuck, Example 6.4) Consider the recursively defined sequence $\left\{a_{j}\right\}$, where $a_{1}=1$ and $a_{n+1}=\frac{1}{a_{n}+1} \forall n \geq 1$.

Prove that this is a Cauchy sequence and determine its limit.
11. Consider the set $\mathrm{A}=\{\mathrm{x} \in \mathbf{R}: 1<\mathrm{x}<2\}$.
(a) Show that A is bounded from above. Find the supremum. Is this supremum a maximum of A ?
(b) Show that A is bounded from below. Find the infimum. Is this infimum a minimum of A ?
12. . Prove that if $\mathrm{S} \subset \mathrm{R}$ is non-empty and bounded below, then it has an infimum.
13. (UC, Berkeley) For $S \subset R$ a non-empty subset that is bounded above and $x \in R$, let $x S$ be the set $\{x s: s \in S\}$.
(a) Show that if $x>0$, then $\sup (x S)=x$ sup (S).
(b) Show that if $x<0$, then $\inf (x S)=x$ inf (S).
14. (UC, Berkeley) Let $\mathrm{S}, \mathrm{T} \subseteq \mathbf{R}$ be non-empty subsets that are bounded from above, and define
$S+T=\{s+t: s \in S, t \in T\}$.
Show $\sup (S+T)=\sup (S)+\sup (T)$. Then, use this to prove that if $x \in R$ and $S+x$ is the set $\{s+x: s \in S\}$, then $\sup (S+x)=\sup (S)+x$.
15. Find the max, min, sup, and inf of the following and justify each answer.

$$
S=\left\{\frac{2 n+1}{n+1}: n \geq 1\right\}
$$

16. Find the max, min, sup, and inf of the following and justify each answer.

$$
T=\left\{\frac{n+(-1)^{n} n}{n+1}: n \geq 1\right\}
$$

17. (Purdue)

Compute the sup, inf, max and min (whenever these exist) for the following sets. ${ }^{1}$
(a) $\{1+1 / n \mid n \in \mathbb{N}\}$
(b) $[0,2)$
(c) $\left\{\left.\frac{n^{2}+15}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$
(d) $\left\{x \mid x \in \mathbb{Q}\right.$ and $\left.x^{2}<2\right\}$
(e) $\left\{y \mid y=x^{2}-x+1\right.$ and $\left.x \in \mathbb{R}\right\}$
(f) $\left\{x \mid x^{2}-3 x+2<0\right.$ and $\left.x \in \mathbb{R}\right\}$
(g) $\left\{\left.\frac{1}{n}-\frac{1}{m} \right\rvert\, n, m \in \mathbb{N}\right\}$
(h) $\left\{\left.1+\frac{1+(-1)^{n}}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(i) $\left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots\right\}$. (This is a list of the fractions in the interval $(0,1)$. The pattern is that we list fractions by increasing value of the denominator. For a given value of denominator, we go from smallest to largest, omitting fractions which are not in reduced form.)
(m) $\left\{\left(1-2 n^{2}\right) / 3 n^{2} \mid n \in \mathbb{N}\right\}$
(j) $\left\{n /\left(1+n^{2}\right) \mid n \in \mathbb{N}\right\}$
(n) $\left\{2 n^{2} /\left(3 n^{2}-1\right) \mid n \in \mathbb{N}\right\}$
(k) $\left\{3 n^{2} /\left(1+2 n^{2}\right) \mid n \in \mathbb{N}\right\}$
(o) $\left\{3 n / \sqrt{1+n^{2}} \mid n \in \mathbb{N}\right\}$
(l) $\left\{n /\left(1-n^{2}\right) \mid n \in \mathbb{N}, n>1\right\}$
(p) $\left\{3 / \sqrt{1+2 n^{2}} \mid n \in \mathbb{N}\right\}$
(q) $\left\{\left.\frac{n-1}{n^{2}+5} \right\rvert\, n \in \mathbb{N}\right\}$
(r) $\left\{\left.\frac{3 n+1}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$
(s) $\left\{n^{(-1)^{n}} \mid n \geq 1\right\}$
18. (Mattuck; 6.5.3) Assume that A and B are bounded non-empty subsets of R. Prove the following (for each part you can assume any of the preceding parts).
If c is a constant then we define $\mathrm{cA}=\{\mathrm{ca} \mid \mathrm{a} \in A\}$.
Also, we define $\mathrm{A}+\mathrm{B}=\{\mathrm{a}+\mathrm{b}: \mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}\}$.
(a) $A \subseteq B \Rightarrow \sup (A) \leq \sup (B)$
(b) $A \subseteq B \Rightarrow \inf (A) \geq \inf (B)$
(c) If $\mathrm{c}>0$, then $\sup \mathrm{cA}=\mathrm{c} \sup \mathrm{A}$
(d) If $\mathrm{c}>0$, then $\inf \mathrm{ca}=\mathrm{c} \inf \mathrm{A}$
(e) $\sup (-\mathrm{A})=-\inf \mathrm{A}$
(f) $\inf (-A)=-\sup A$
(g) $\sup (\mathrm{A}+\mathrm{B}) \leq \sup A+\sup B$
(h) $\inf (A+B) \geq \inf A+\inf B$
19. Let $\left\{a_{n}\right\}$ be a bounded sequence. Define $\lim \sup a_{n}$ and $\lim \inf a_{n}$.
20. For each of the following sequences $\left\{a_{n}\right\}$, detemine $\lim \sup a_{n}$ and $\lim \inf a_{n}$.
(a) $a_{n}=(-1)^{n}$
(b) $a_{n}=\cos \frac{n \pi}{2}$
(c) $a_{n}=(\arctan n) \sin \frac{n \pi}{2}$
21. (challenge problem) Let $a_{n}=\cos \sqrt{t+n^{2} \pi^{2}}$ for a fixed value of $\mathrm{t}>0$. Detemine $\lim \sup a_{n}$ and $\lim \inf a_{n}$.
22. Determine $\lim \sup a_{n}$ and $\lim \inf a_{n}$ for each of the following sequences:

Let $a_{n}=\frac{1+(-1)^{n} 2 n}{1+3 n}$. Determine $\lim \sup a_{n}$ and $\lim \inf a_{n}$.
23. Prove that $\lim \sup \left(a_{n}+b_{n}\right) \leq \lim \sup \left(a_{n}+b_{n}\right)$. Give an example when equality does not hold.
24. Prove that $\lim \inf a_{n}+\lim \inf b_{n} \leq \lim \inf \left(a_{n}+b_{n}\right) \quad$ Give an example when equality does not hold.
25. State and prove results similar to those of problem 14 for the product $\left\{a_{n} b_{n}\right\}$ of two sequences with positive terms.
26. Let $\left\{a_{n}\right\}$ be the sequence $0,1,2,1,0,1,2,1,0,1,2,1 \ldots$ and let
$\left\{b_{n}\right\}$ be the sequence $2,1,1,0,2,1,1,0,2,1,1,0 \ldots$. Find:
(a) $\lim \inf a_{n}+\lim \inf b_{n}$
(b) $\liminf \left(a_{n}+b_{n}\right)$
(c) $\lim \inf a_{n}+\lim \sup b_{n}$
(d) $\lim \sup \left(a_{n}+b_{n}\right)$
(e) $\lim \sup a_{n}+\lim \sup b_{n}$
27. Prove the Proposition: If lim sup $a_{n}=s^{*}$, then there exists a subsequence of $\left\{a_{n}\right\}$ that converges to s^{*}.

