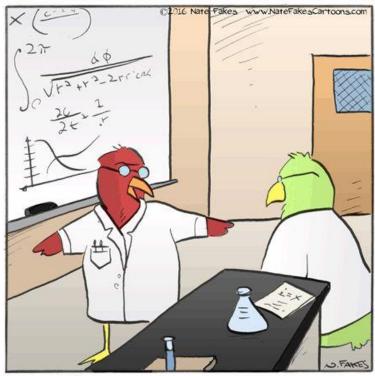
MATH 351: CLASS DISCUSSION, 24 OCTOBER 2018



"Well, I can't figure it out either, Petey. I wish we weren't bird brains."

SERIES: RATIO TEST, ROOT TEST, ASYMPTOTIC CONVERGENCE TEST, ABSOLUTE CONVERGENCE, CAUCHY'S THEOREM, REARRANGEMENTS

Continuation: Numerical series

- 1. Review the series (a) $\sum_{n=1}^{\infty} \frac{1}{n}$ and (b) $\sum_{n=0}^{\infty} r^n$ for $|\mathbf{r}| < 1$
- **2.** What is meant by a "telescoping series"?
- **3.** What is the **Cantor set**?
- 4. Review: Define conditional convergence; absolute convergence; alternating series
- 5. Review: Prove that absolute convergence implies convergence. Is the converse true?
- **6.** State and prove the **Ratio test** for series.
- 7. State and prove the **Integral test** for positive series.
- 8. State and prove the **n**th root test for series.
- 9. State and prove the Asymptotic Comparison Test.
- 10. State and prove Cauchy's test for conditional convergence of an alternating series.
- **11.** What is a **rearrangement** of a series?
- **12.** State and prove the **rearrangement theorems**.

7A-1 For each of the following series, determine convergence or divergence? Justify your answer. If the series converges, find its sum.

a)
$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots + \frac{1}{4^n} + \dots$$

b) $1 - 1 + 1 - 1 + \dots + (-1)^n + \dots$
c) $1 + \frac{1}{2} + \frac{2}{3} + \dots + \frac{n}{n+1} + \dots$
d) $\ln 2 + \ln \sqrt{2} + \ln \sqrt[3]{2} + \ln \sqrt{2} + \dots$
e) $\sum_{1}^{\infty} \frac{2^{n-1}}{3^n}$
f) $\sum_{0}^{\infty} (-1)^n \frac{1}{3^n}$

7A-2 Find the rational number represented by the infinite decimal .21111....

7A-3 For which x does the series $\sum_{0}^{\infty} \left(\frac{x}{2}\right)^{n}$ converge? For these values, find its sum f(x).

7A-4 Find the sum of these series by first finding the partial sum S_n.

a)
$$\sum_{1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$

b)
$$\sum_{1}^{\infty} \frac{1}{n(n+2)}.$$
 (Hint: $\frac{1}{n(n+2)} = \frac{a}{n} + \frac{b}{n+2}$ for suitable a, b)

7A-5 A ball is dropped from height h; each time it lands, it bounces back 2/3 of the height from which it previously fell. What is the total distance (up and down) the ball travels?

7B: Convergence Tests

7B-1 Using the integral test, tell whether the following series converge or diverge; show work or reasoning.

a)
$$\sum_{0}^{\infty} \frac{n}{n^2 + 4}$$
 b) $\sum_{0}^{\infty} \frac{1}{n^2 + 1}$ c) $\sum_{0}^{\infty} \frac{1}{\sqrt{n + 1}}$
d) $\sum_{1}^{\infty} \frac{\ln n}{n}$ e) $\sum_{2}^{\infty} \frac{1}{(\ln n)^p \cdot n}$ f) $\sum_{1}^{\infty} \frac{1}{n^p}$

(In the last two, the answer depends on the value of the parameter p.)

7B-2 Using the limit comparison test, tell whether each series converges or diverges; show work or reasoning. (For some of them, simple comparison works.)

a)
$$\sum_{1}^{\infty} \frac{1}{n^2 + 3n}$$
 b) $\sum_{1}^{\infty} \frac{1}{n + \sqrt{n}}$ c) $\sum_{1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$
d) $\sum_{1}^{\infty} \sin\left(\frac{1}{n^2}\right)$ e) $\sum_{1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$ f) $\sum_{1}^{\infty} \frac{\ln n}{n}$
g) $\sum_{2}^{\infty} \frac{n^2}{n^4 - 1}$ h) $\sum_{1}^{\infty} \frac{n^3}{4n^4 + n^2}$

7B-3 Prove that if $a_n > 0$ and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} \sin a_n$ also converges.

7B-4 Using the ratio test, or otherwise, determine whether or not each of these series is absolutely convergent. (Note that 0! = 1.)

7B-5 For those series in 7B-4 which are *not* absolutely convergent, tell whether they are conditionally convergent or divergent.

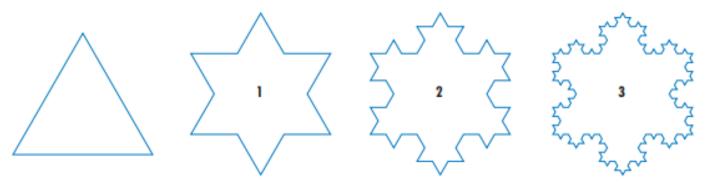
Challenge problems: Stewart, Calculus

1.

To construct the **snowflake curve**, start with an equilateral triangle with sides of length 1. Step 1 in the construction is to divide each side into three equal parts, construct an equilateral triangle on the middle part, and then delete the middle part (see the figure). Step 2 is to repeat Step 1 for each side of the resulting polygon. This process is repeated at each succeeding step. The snowflake curve is the curve that results from repeating this process indefinitely.

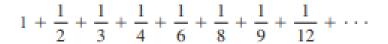
- (a) Let s_n, l_n, and p_n represent the number of sides, the length of a side, and the total length of the nth approximating curve (the curve obtained after Step n of the construction), respectively. Find formulas for s_n, l_n, and p_n.
- (b) Show that p_n → ∞ as n → ∞.
- (c) Sum an infinite series to find the area enclosed by the snowflake curve.

Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite area.



2.

Find the sum of the series



where the terms are the reciprocals of the positive integers whose only prime factors are 2s and 3s.

3. Sum the series

$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right).$$

4. A sequence $\{a_n\}$ is defined recursively by the equations

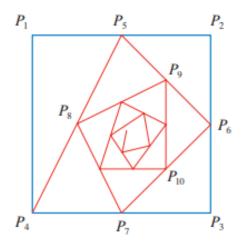
$$a_0 = a_1 = 1$$
 $n(n-1)a_n = (n-1)(n-2)a_{n-1} - (n-3)a_{n-2}$

Find the sum of the series $\sum_{n=0}^{\infty} a_n$.

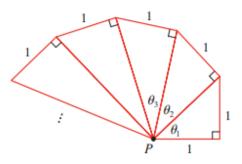
5.

Starting with the vertices $P_1(0, 1)$, $P_2(1, 1)$, $P_3(1, 0)$, $P_4(0, 0)$ of a square, we construct further points as shown in the figure: P_5 is the midpoint of P_1P_2 , P_6 is the midpoint of P_2P_3 , P_7 is the midpoint of P_3P_4 , and so on. The polygonal spiral path $P_1P_2P_3P_4P_5P_6P_7...$ approaches a point Pinside the square.

- (a) If the coordinates of P_n are (x_n, y_n) , show that $\frac{1}{2}x_n + x_{n+1} + x_{n+2} + x_{n+3} = 2$ and find a similar equation for the y-coordinates.
- (b) Find the coordinates of P.

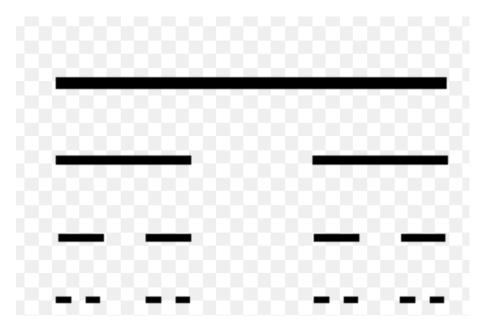


6. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefinitely many turns around *P* by showing that $\Sigma \theta_n$ is a divergent series.



The notion of infinity is our greatest friend; it is also the greatest enemy of our peace of mind.

- James Pierpont



Constructing the Cantor set

