MATH 351: QUESTIONS FOR CLASS DISCUSSION, 26[™] OCTOBER

BRIEF LOOK AT POWER SERIES

FUNCTIONS OF ONE VARIABLE: CONTINUITY

Review:

Define conditional convergence; absolute convergence; alternating series; rearrangement

State and prove Cauchy's test for conditional convergence of an alternating series.

Prove that absolute convergence implies convergence. Is the converse true?

State and prove the rearrangement theorems.

I Define: radius of convergence

- 1. Prove the theorem: For each power series $\sum a_n x^n$ there is a unique $R \ge 0$ such that $\sum a_n x^n$ converges absolutely for $|\mathbf{x}| < \mathbf{R}$ and diverges for $|\mathbf{x}| > \mathbf{R}$.
- 2. Find the radius of convergence (and the sum) of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} x^n$$
, $|x| < 1$
(b) $\sum_{n=1}^{\infty} nx^{n-1}$, $|x| < 1$
(c) $\sum_{n=1}^{\infty} nx^n$, $|x| < 1$
(d) $\sum_{n=1}^{\infty} \frac{n}{2^n}$
(e) $\sum_{n=2}^{\infty} n(n-1)x^n$, $|x| < 1$
(f) $\sum_{n=2}^{\infty} \frac{n^2 - n}{2^n}$
(g) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$
(h) $\sum_{n=1}^{\infty} \frac{n!(n+1)!}{(3n)!}$
(i) $\sum_{n=1}^{\infty} \frac{n(x+2)^n}{5^{n-1}}$.

(Smith College exercises)

Exercise 5.7. Use the ratio test to find the interval of convergence for each of the following power series.

(a)
$$\sum_{i=1}^{\infty} \frac{x^{i}}{i}$$

(b)
$$\sum_{i=1}^{\infty} \frac{x^{i}}{2^{i}}$$

(c)
$$\sum_{i=1}^{\infty} \frac{x^{i}}{i!}$$

(d)
$$\sum_{i=1}^{\infty} ix^{i}$$

(e)
$$\sum_{i=1}^{\infty} \frac{i^{2}}{2^{i}}x^{i}$$

(f)
$$\sum_{i=1}^{\infty} i^{3i}$$

(g)
$$\sum_{i=1}^{\infty} (1+x)^{i}$$

(h)
$$\sum_{n=1}^{\infty} \frac{99}{n^{n}}x^{n}$$

(i)
$$\sum_{n=1}^{\infty} n!x^{n}$$

Exercise 5.11. Use the ratio test to find the interval of convergence for each of the following power series.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 (b)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$
 (c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} nx^n$$
 (e)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}x^n$$
 (f)
$$\sum_{n=1}^{\infty} \frac{n^3}{x^n}$$

(g)
$$\sum_{n=1}^{\infty} (1+x)^n$$
 (h)
$$\sum_{n=1}^{\infty} \frac{9^n}{n^9}x^n$$
 (i)
$$\sum_{n=1}^{\infty} n!x^n$$

II CONTINUITY & LIMITS

1. Define *function*, *domain*, *graph*.

Let f(x) be defined on (a, b) and let $p \in (a, b)$. Define: f(x) is continuous at x = p. Give both the "Mattuck" definition and the ϵ, δ *definitions*.

Define: f(x) is **continuous** on (a, b).

- 2. Prove, using only the definition of continuity, that each of the following functions is continuous on the given interval.
 - (a) $f(x) = x^2$ on $(-\infty, \infty)$
 - (b) $f(x) = 1/x \text{ on } (0, \infty)$
 - (c) $f(x) = 2x^3 4x$ on $(-\infty, \infty)$
 - (d) $f(x) = \frac{x}{3+x^2}$ on $(-\infty, \infty)$
- 3. Prove that $g(x) = \sin x$ is continuous on $(-\infty, \infty)$. Hint: show that $|\sin a \sin b| \le |a b|$.
- 4. Using (3) prove that $v(x) = \int_0^{\pi} \frac{\sin xt}{t} dt$ is continuous everywhere.
- 5. What are the four types of discontinuities?
- 6. Define: right-continuity, left-continuity. Define: f(x) is continuous on [a, b].
- 7. Using (3) prove that $G(x) = \int_0^{\pi} \frac{\sin xt}{t} dt$ is continuous everywhere. Which fact(s) about the Riemann integral are you taking for granted?
- 8. What are the four types of *discontinuities*? For each of the four, provide an example.

9. Let f be defined for x near p. Define: the limit of f(x) as $x \to p$ equals L.

10. What is the relationship between continuity and limit? Define: limit as $x \to \infty$ or $x \to -\infty$

11. Prove each of the following results, using only the definition of limit.

(a)
$$\lim_{x \to 0} x \sin \frac{1}{x}$$

(b) $\lim_{x \to 3^+} \frac{|x^2 - 9|}{x - 3}$
(c) $\lim_{x \to \infty} \frac{1}{3 + x^2}$
(d) $\lim_{x \to 1} \frac{x^3 - 125}{x - 5}$

