MATH 351: QUESTIONS FOR CLASS DISCUSSION, $26^{\text {TH }}$ OCTOBER

BRIEF LOOK AT POWER SERIES

FUNCTIONS OF ONE VARIABLE: CONTINUITY

Review:

Define conditional convergence; absolute convergence; alternating series; rearrangement
State and prove Cauchy's test for conditional convergence of an alternating series.
Prove that absolute convergence implies convergence. Is the converse true?
State and prove the rearrangement theorems.
I Define: radius of convergence

1. Prove the theorem: For each power series $\sum a_{n} x^{n}$ there is a unique $R \geq 0$ such that $\sum a_{n} x^{n}$ converges absolutely for $|\mathrm{x}|<\mathrm{R}$ and diverges for $|\mathrm{x}|>\mathrm{R}$.
2. Find the radius of convergence (and the sum) of each of the following power series:
(a) $\sum_{n=0}^{\infty} x^{n}, \quad|x|<1$
(b) $\sum_{n=1}^{\infty} n x^{n-1}, \quad|x|<1$
(c) $\sum_{n=1}^{\infty} n x^{n}, \quad|x|<1$
(d) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(e) $\sum_{n=2}^{\infty} n(n-1) x^{n}, \quad|x|<1$
(f) $\sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}}$
(g) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
(h)

$$
\sum_{n=1}^{\infty} \frac{n!(n+1)!}{(3 n)!}
$$

(i)

$$
\sum_{n=1}^{\infty} \frac{n(x+2)^{n}}{5^{n-1}}
$$

(Smith College exercises)
Exercise 5.7. Use the ratio test to find the interval of convergence for each of the following power series.
(a) $\sum_{i=1}^{\infty} \frac{x^{i}}{i}$
(b) $\sum_{i=1}^{\infty} \frac{x^{i}}{2^{i}}$
(c) $\sum_{i=1}^{\infty} \frac{x^{i}}{i!}$
(d) $\sum_{i=1}^{\infty} i x^{i}$
(e) $\sum_{i=1}^{\infty} \frac{i^{2}}{2^{i}} i^{i}$
(f) $\sum_{i=1}^{\infty} i^{3 i}$
(g) $\sum_{i=1}^{\infty}(1+x)^{i}$
(h) $\sum_{n=1}^{\infty} \frac{99}{n^{n}} x^{n}$
(i) $\sum_{n=1}^{\infty} n!x^{n}$

Exercise 5.11. Use the ratio test to find the interval of convergence for each of the following power series.
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(b) $\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} n x^{n}$
(e) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} x^{n}$
(f) $\sum_{n=1}^{\infty} \frac{n^{3}}{x^{n}}$
(g) $\sum_{n=1}^{\infty}(1+x)^{n}$
(h) $\sum_{n=1}^{\infty} \frac{9^{n}}{n^{9}} x^{n}$
(i) $\sum_{n=1}^{\infty} n!x^{n}$

II CONTINUITY \& LIMITS

1. Define function, domain, graph.

Let $\mathrm{f}(\mathrm{x})$ be defined on (a, b) and let $\mathrm{p} \in(a, b)$. Define: $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{p}$.
Give both the "Mattuck" definition and the ϵ, δ definitions.
Define: $f(x)$ is continuous on (a, b).
2. Prove, using only the definition of continuity, that each of the following functions is continuous on the given interval.
(a) $f(x)=x^{2}$ on $(-\infty, \infty)$
(b) $\mathrm{f}(\mathrm{x})=1 / \mathrm{x}$ on $(0, \infty)$
(c) $\mathrm{f}(\mathrm{x})=2 x^{3}-4 x$ on $(-\infty, \infty)$
(d) $\mathrm{f}(\mathrm{x})=\frac{x}{3+x^{2}}$ on $(-\infty, \infty)$
3. Prove that $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ is continuous on $(-\infty, \infty)$. Hint: show that $|\sin \mathrm{a}-\sin \mathrm{b}| \leq|\mathrm{a}-\mathrm{b}|$.
4. Using (3) prove that $v(x)=\int_{0}^{\pi} \frac{\sin x t}{t} d t$ is continuous everywhere.
5. What are the four types of discontinuities?
6. Define: right-continuity, left-continuity. Define: $\mathbf{f}(\mathbf{x})$ is continuous on $[\mathbf{a}, \mathbf{b}]$.
7. Using (3) prove that $G(x)=\int_{0}^{\pi} \frac{\sin x t}{t} d t$ is continuous everywhere. Which fact(s) about the Riemann integral are you taking for granted?
8. What are the four types of discontinuities? For each of the four, provide an example.
9. Let f be defined for x near p. Define: the limit of $\mathbf{f}(\mathbf{x})$ as $\boldsymbol{x} \rightarrow \boldsymbol{p}$ equals \mathbf{L}.
10. What is the relationship between continuity and limit? Define: limit as $\mathrm{x} \rightarrow \infty$ or $\mathrm{x} \rightarrow-\infty$
11. Prove each of the following results, using only the definition of limit.
(a) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(b) $\lim _{x \rightarrow 3+} \frac{\left|x^{2}-9\right|}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{1}{3+x^{2}}$
(d) $\lim _{x \rightarrow 1} \frac{x^{3}-125}{x-5}$

