MATH 351: CLASS DISCUSSION, 3 OCTOBER 2018

- *1.* Complete the proof of the Nested Intervals Theorem.
- 2. Show that, for any $\alpha \in \mathbb{R}$, there exists a sequence of nested intervals having intersection $\{\alpha\}$.
- 3. Example. Let $a_0 = 0$, and for $n \ge 1$, let $a_n = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n}$ Using the nested interval theorem, prove that $\{a_n\}$ converges.
- 4. Definition: K is a *cluster point* of $\{a_n\}$ means that, for all $\varepsilon > 0$, there exist infinitely many *n* for which $|a_n K| < \varepsilon$.
- 5. Find any (and all) cluster points for each of the following sequences:
 - (a) ¹/₂, 1/3, ¹/₄, 1/5, ...
 - (b) 1, 2, 3, 4, 5, ...
 - (c) 1, 0, 1, 0, 1, 0, ...
 - (d) $1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \dots$
 - (e) 2, 3, 5, 7, 11, 13, ...
- 6. Prove the Cluster Point Theorem: A sequence $\{a_n\}$ has a cluster point, K, if and only if there exists a subsequence of $\{a_n\}$ that converges to K.
- 7. Prove the Bolzano-Weierstrass Theorem: A bounded sequence $\{a_n\}$ has a convegent subsequence.

Exercises:

- 1. Give an example of each of the following or argue that no such example exists:
 - (a) A sequence that has a subsequence that is bounded but contains no subsequence that converges.
 - (b) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these two values.
 - (c) A sequence that contains subsequences converging to every point in the infinite set $\{1/2, 1/3, \frac{1}{4}, 1/5, ...\}$.
 - (d) A sequence that contains subsequences converging to every point in the infinite set $\{1, 1/2, 1/3, \frac{1}{4}, 1/5, ...\}$, and no subsequences converging to points outside of this set.

- 2. Decide whether each of the following statements is True or False. Provide either a brief justification or a counterexample.
 - (a) If every proper subsequence of $\{x_n\}$ converges, then $\{x_n\}$ converges as well.
 - (b) If $\{a_n\}$ contains a divergent subsequence, then $\{a_n\}$ diverges.
 - (c) If {a_n} is bounded and diverges, then there exist two subsequences of {a_n} that converge to different limits.
 - (d) If $\{a_n\}$ is monotone and contains a convergent subsequence, then $\{a_n\}$ converges.

ε -Red Riding Hood and the Big Bad Bolzano-Weierstrass Theorem

Once upon a time¹ a long long time ago back when Fermat's Last Theorem would still fit in a margin, \exists a little² girl named ε -Red Riding Hood (see Figure 1.1). ε -Red

Figure 1.1: ε -Red Riding Hood with her basket of lemmas and π .

Riding Hood was trying to find the shortest path through the forest \mathbb{F} , a subfield of \mathbb{X} , to Γ 's domain. She was carrying a basket full of lemmas³ and π , to give to Γ (see Figure 1.2) who had a degenerate case of discontinuity.

Meanwhile, independently, the Big Bad Bolzano-Weierstrass Theorem (see Figure 1.3) was on a random walk through \mathbb{F} . As t approached T_0 , T-time, the paths of ε -Red Riding Hood and the Big Bad Bolzano-Weierstrass Theorem converged.

"Hello ε -Red Riding Hood, may I ask you a question?", asked the Big Bad Bolzano-Weierstrass Theorem.

"You may indeed provided it is well-posed", stated ε -Red Riding Hood.

https://people.maths.ox.ac.uk/macdonald/errh/101_analysis_bedtime_stories_(epsilon_red_riding_hood).pdf