## MATH 351: QUESTIONS FOR CLASS DISCUSSION, $31^{\text {TH }}$ OCTOBER



## CONTINUITY; LIMITS

## REVIEW

1. Prove, using only the definition of continuity, that each of the following functions is continuous on the given interval.
(a) $f(x)=x^{3}$ on $(-\infty, \infty)$
(b) $f(x)=1 / x$ on $(0, \infty)$
(c) $\mathrm{f}(\mathrm{x})=x^{3}-4 x$ on $(-\infty, \infty)$
(d) $\mathrm{f}(\mathrm{x})=\frac{x^{2}}{1+x^{2}}$ on $(-\infty, \infty)$
2. Prove that $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ is continuous on $(-\infty, \infty)$. Hint: show that $|\sin \mathrm{a}-\sin \mathrm{b}| \leq|\mathrm{a}-\mathrm{b}|$.
3. What are the four types of discontinuities?
4. Define: right-continuity, left-continuity. Define: $\mathbf{f}(\mathbf{x})$ is continuous on $[\mathbf{a}, \mathbf{b}]$.
5. Using (2) prove that $G(x)=\int_{0}^{\pi} \frac{\sin x t}{t} d t$ is continuous everywhere. Which fact(s) about the Riemann integral are you taking for granted?

## LIMITS

6. Let f be defined for x near $p$. Define: the limit of $\mathbf{f}(\mathbf{x})$ as $\boldsymbol{x} \rightarrow \boldsymbol{p}$ exists and equals $L$.

Define right-hand limit and left-hand limit.
7. (a) Let $f(x)=3 x+1$. Prove, using only the definition of limit, that

$$
\lim _{x \rightarrow 2} f(x)=7
$$

(b) Let $\mathrm{g}(\mathrm{x})=x^{2}$. Prove, using only the definition of limit, that

$$
\lim _{x \rightarrow 2} g(x)=4
$$

(c) Prove that

$$
\lim _{x \rightarrow 2}\left(x^{2}+x-1\right)=5
$$

(d) Prove that

$$
\lim _{x \rightarrow 4} \frac{1}{x}=\frac{1}{4}
$$

8. [S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer (2016)]

True or False? Justify!
(a) If a particular $\delta$ has been constructed as a suitable response to a particular $\varepsilon$ challenge, then any smaller positive $\delta$ will also suffice.
(b) If $\lim _{x \rightarrow b} f(x)=L$ and $b$ happens to be in the domain of f , then $\mathrm{L}=\mathrm{f}(\mathrm{b})$.
(c) If $\lim _{x \rightarrow b} f(x)=L$, then $\lim _{x \rightarrow b} 3(f(x)-2)^{2}=3(L-2)^{2}$
(d) If $\lim _{x \rightarrow b} f(x)=0$, then $\lim _{x \rightarrow b} f(x) g(x)=0$,
for any functiong (with domain equal to the domain of $f$ ).
9. What is the relationship between continuity and limit? Define: limit as $\mathrm{x} \rightarrow \infty$ or $\mathrm{x} \rightarrow-\infty$.
10. Prove each of the following results, using only the definition of limit.
(a) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(b) $\lim _{x \rightarrow 3+} \frac{\left|x^{2}-9\right|}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{1}{3+x^{2}}$
(d) $\lim _{x \rightarrow 1} \frac{x^{3}-125}{x-5}$
11. Define infinite limits.
12. Explain the relationship between continuity and limits.
13. (Mattuck) Does "absolute continuity" imply continuity? That is, if $|f(x)|$ is continuous on $I$, will $f(x)$ be continuous on I?
14. State the Algebraic Limit Theorems for functions.
15. [S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer (2016)]

Provide an example of each or explain why the request is impossible.
(a) Two functions $f$ and $g$, neither of which is continuous at 0 but such that $f(x) g(x)$ and $f(x)+g(x)$ are continuous at 0 .
(b) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x)+g(x)$ is continuous at 0 .
(c) A function $f(x)$ continuous at 0 and $g(x)$ not continuous at 0 such that $f(x) g(x)$ is continuous at 0.
(d) A function $\mathrm{f}(\mathrm{x})$ not continuous at 0 such that $f(x)+\frac{1}{f(x)}$ is continuous at 0 .
(e) A function $\mathrm{f}(\mathrm{x})$ not continuous at 0 such that is continuous at 0 .
16. State and prove the Squeeze Theorem for limits.
17. State the Limit Location Theorem for functions.
18. State the Function Location Theorem.
19. What is Sequential Continuity?


