## MATH 351: CLASS DISCUSSION, 5 OCTOBER 2018

1. Complete the proof of the Bolzano-Weierstrass Theorem:

## A bounded sequence $\left\{a_{n}\right\}$ has a convegent subsequence.

2. Define Cauchy sequence.
3. How are Cauchy sequences related to convergent sequences? What is meant by "Cauchy criterion for convergence"?
4. Show directly that $b_{n}=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$ a Cauchy sequence.

Hint: First note that $\frac{1}{n!} \leq \frac{1}{2^{n}}$ for all $n \geq 4$.
5. Consider the following statement: "Given any $\epsilon>0, a_{n+1} \approx a_{n}$ for $\mathrm{n} \gg 1$ "

Give an example of an increasing sequence that satisfies this condition, yet is not a Cauchy sequence.
6. Given a sequence $\left\{a_{j}\right\}$ that has the property $\left|a_{n}-a_{k}\right| \leq \frac{1}{n+k}$ for all $n$ and $k$. Prove that $\left\{a_{n}\right\}$ is Cauchy.
7. Given a sequence $\left\{a_{n}\right\}$ that has the property $\left|a_{n}-a_{n+1}\right| \leq \frac{1}{2^{n}}$. for all $n$. Must it follow that $\left\{a_{n}\right\}$ is Cauchy?

Exercises: (S. Abbott, Understanding Analysis, $2^{\text {nd }}$ edition, Springer)

1. Give an example of each of the following or argue that no such example exists:
(a) A sequence that has a subsequence that is bounded but contains no subsequence that converges.
(b) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these two values.
(c) A sequence that contains subsequences converging to every point in the infinite set $\{1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}$.
(d) A sequence that contains subsequences converging to every point in the infinite set $\{1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}$, and no subsequences converging to points outside of this set.
2. Decide whether each of the following statements is True or False. Provide either a brief justification or a counterexample.
(a) If every proper subsequence of $\left\{x_{n}\right\}$ converges, then $\left\{x_{n}\right\}$ converges as well.
(b) If $\left\{a_{n}\right\}$ contains a divergent subsequence, then $\left\{a_{n}\right\}$ diverges.
(c) If $\left\{a_{n}\right\}$ is bounded and diverges, then there exist two subsequences of $\left\{a_{n}\right\}$ that converge to different limits.
(d) If $\left\{a_{n}\right\}$ is monotone and contains a convergent subsequence, then $\left\{a_{n}\right\}$ converges.
3. Give an example of each of the following or argue that no such example exists:
(a) A Cauchy sequence that is not monotone.
(b) A Cauchy sequence with an unbounded subsequence.
(c) A divergent monotone sequence with a Cauchy subsequence.
(d) An unbounded sequence containing a subsequence that is Cauchy.
4. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are Cauchy sequences, then one easy way to prove that $\left\{a_{n}+b_{n}\right\}$ is Cauchy is to use the Cauchy criterion. Explain!
(a) Give a direct argument that $\left\{a_{n}+b_{n}\right\}$ is Cauchy that does not use the Cauchy criterion.
(b) Do the same for the product, $\left\{\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right\}$.
5. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be Cauchy sequences. Decide whether or not each of the following is Cauchy, justifying each conclusion.
(a) $\mathrm{c}_{\mathrm{n}}=\left|\mathrm{a}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}}\right|$
(b) $\mathrm{c}_{\mathrm{n}}=(-1)^{n} \mathrm{a}_{\mathrm{n}}$
(c) $\mathrm{c}_{\mathrm{n}}=\llbracket \mathrm{a}_{\mathrm{n}} \rrbracket$ where $\llbracket x \rrbracket$ refers to the greatest integer less than or equal to x .

FRANK \& ERNEST BOB THAVES


