MATH 351: CLASS DISCUSSION, 5 OCTOBER 2018

1. Complete the proof of the Bolzano-Weierstrass Theorem:

A bounded sequence $\{a_n\}$ has a convegent subsequence.

- 2. Define Cauchy sequence.
- 3. How are Cauchy sequences related to convergent sequences? What is meant by "Cauchy criterion for convergence"?
- 4. Show directly that $b_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$ a Cauchy sequence. *Hint:* First note that $\frac{1}{n!} \leq \frac{1}{2^n}$ for all $n \geq 4$.
- 5. Consider the following statement: "Given any $\epsilon > 0$, $a_{n+1} \underset{\epsilon}{\approx} a_n$ for n >>1"

Give an *example* of an increasing sequence that satisfies this condition, yet is not a Cauchy sequence.

- 6. Given a sequence $\{a_j\}$ that has the property $|a_n a_k| \le \frac{1}{n+k}$ for all *n* and *k*. Prove that $\{a_n\}$ is Cauchy.
- 7. Given a sequence $\{a_n\}$ that has the property $|a_n a_{n+1}| \le \frac{1}{2^n}$. for all *n*. Must it follow that $\{a_n\}$ is Cauchy?

Exercises: (S. Abbott, Understanding Analysis, 2nd edition, Springer)

- 1. Give an example of each of the following or argue that no such example exists:
 - (a) A sequence that has a subsequence that is bounded but contains no subsequence that converges.
 - (b) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these two values.
 - (c) A sequence that contains subsequences converging to every point in the infinite set $\{1/2, 1/3, \frac{1}{4}, 1/5, \ldots\}$.
 - (d) A sequence that contains subsequences converging to every point in the infinite set $\{1, 1/2, 1/3, \frac{1}{4}, 1/5, \ldots\}$, and no subsequences converging to points outside of this set.
- 2. Decide whether each of the following statements is True or False. Provide either a brief justification or a counterexample.
 - (a) If every proper subsequence of $\{x_n\}$ converges, then $\{x_n\}$ converges as well.
 - (b) If $\{a_n\}$ contains a divergent subsequence, then $\{a_n\}$ diverges.
 - (c) If {a_n} is bounded and diverges, then there exist two subsequences of {a_n} that converge to different limits.
 - (d) If $\{a_n\}$ is monotone and contains a convergent subsequence, then $\{a_n\}$ converges.
- 3. Give an example of each of the following or argue that no such example exists:
 - (a) A Cauchy sequence that is not monotone.
 - (b) A Cauchy sequence with an unbounded subsequence.
 - (c) A divergent monotone sequence with a Cauchy subsequence.

- (d) An unbounded sequence containing a subsequence that is Cauchy.
- If {a_n} and {b_n} are Cauchy sequences, then one easy way to prove that {a_n + b_n} is Cauchy is to use the Cauchy criterion. Explain!
 - (a) Give a direct argument that $\{a_n + b_n\}$ is Cauchy that does not use the Cauchy criterion.
 - (b) Do the same for the product, $\{a_nb_n\}$.
- 5. Let {a_n} *and* {b_n} be Cauchy sequences. Decide whether or not each of the following is Cauchy, justifying each conclusion.
 - (a) $c_n = |a_n b_n|$
 - (b) $c_n = (-1)^n a_n$
 - (c) $c_n = [[a_n]]$ where [[x]] refers to the greatest integer less than or equal to x.

