MATH 351: QUESTIONS FOR DISCUSSION, 10 SEPTEMBER 2018

Introduction to Limits

EXERCISES (continued from last meeting)

1. Define absolute value. State and prove the multiplicative property and the triangle inequality. State and prove, using induction, the extended triangle inequality. Show that the inequality $|a-b| \geq|a|-|b|$ (called the difference form of the triangle inequality) follows directly from the triangle inequality.
2. Let $\mathrm{s}_{\mathrm{n}}=\mathrm{c}_{1} \cos \mathrm{t}+\mathrm{c}_{2} \cos 2 \mathrm{t}+\ldots+\mathrm{c}_{\mathrm{n}} \cos \mathrm{nt}$ where $c_{j}=\frac{1}{2^{j}}$. Prove that $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ is bounded by 1 .
3. Let $b_{n}=\frac{2 n+7}{n-9}$. Guess the limit, L, of the sequence $\left\{b_{n}\right\}$. For which (positive) values of n is $b_{n} \tilde{\sigma}_{0.1} L$?
4. Let $b_{n}=\frac{n+3}{n^{2}+n+19}$. Guess the limit, L, of the sequence $\left\{b_{n}\right\}$. For which (positive) values of n is $b_{n} \widetilde{\widetilde{0}} 0.001 L$?
5. Let $\left\{b_{n}\right\}$ be a sequence. Give the definition of: $\left\{b_{n}\right\}$ converges.

Define: $\left\{b_{n}\right\}$ converges to L.
6. Let $z_{n}=\frac{1789+\cos (2018 n)}{3 n+88}$. Prove that $\left\{z_{n}\right\}$ converges to a limit L.
7. Let $e_{n}=\sqrt{n^{2}+5 n+1789}-\sqrt{n^{2}+n+1689}$. Prove that $\left\{\mathrm{e}_{\mathrm{n}}\right\}$ converges to a limit L.

MORE ON LIMITS

1. Prove that if a sequence converges to L, then L is unique.
2. Prove that if $\left\{a_{n}\right\}$ is a non-negative sequence converging to 0 , the sequence $\left\{\sqrt{a_{n}}\right\}$ must converge to 0 as well.
3. Define $\lim \mathrm{a}_{\mathrm{n}}=\infty$.
4. Prove that the sequence $a_{n}=1+n^{2} \rightarrow \infty$.
5. Which of the following sequences tend to ∞ ? For those that do, prove it.
(a) $(-1)^{2}$
(b) $\frac{n}{n+4}$
(c) $(-1)^{\mathrm{n}} \mathrm{n}^{2}$
(d) $\sqrt[3]{n+1}$
(e) $1+n^{2}$
(f) $(-1)^{n}+\sin n+e^{n}$
(g) $\sin n+\ln n$
6. Prove that the sequence $a_{n}=\frac{1}{n+1}+\frac{3}{n+2}$ converges.
7. State the $\mathrm{K}-\varepsilon$ Principle.
8. Using the $\mathrm{K}-\varepsilon$ Principle prove that the sequence $a_{n}=\frac{1}{n+1}+\frac{3}{n+2}$ converges.
9. Using the K- ε Principle prove that the sequence $b_{n}=\frac{n}{2 n+1}+\frac{n}{n+2}$ converges.
10. Prove that $\lim _{n \rightarrow \infty} \frac{15 n^{3}+2018}{5 n^{3}+n+1}$ exists.
11. Prove that $\ln (\ln n) \rightarrow \infty$.
12. Prove that $\frac{e^{3 n}}{2018+e^{n}} \rightarrow \infty$.
13. Prove the theorem: If $a>$ I then $\lim _{n \rightarrow \infty} a^{n}=\infty$.

Hint: let $a=1+k$ where $k>0$. Then apply the binomial theorem.
14. Prove the Corollary to the Theorem above, viz.

$$
\text { If } 0<a<\text { I then } \lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}^{\mathrm{n}}=0
$$

15. Find $\lim _{\mathrm{n} \rightarrow \infty}\left(1-\frac{\alpha}{100000}\right)^{\mathrm{n}}$ given that $100000>\alpha>0$.
16. Find $\lim _{n \rightarrow \infty}\left(\sin ^{8} \frac{\pi}{5}\right)^{n}$.
17. Prove that every convergent sequence is bounded.
