MATH 351: QUESTIONS FOR DISCUSSION, 10 SEPTEMBER 2018

Introduction to Limits

*** EXERCISES** (continued from last meeting)

- 1. Define *absolute value*. State and prove the multiplicative property and the triangle inequality. State and prove, using induction, the extended triangle inequality. Show that the inequality $|a b| \ge |a| |b|$ (called the *difference form* of the triangle inequality) follows directly from the triangle inequality.
- 2. Let $s_n = c_1 \cos t + c_2 \cos 2t + \ldots + c_n \cos nt$ where $c_j = \frac{1}{2^j}$. Prove that $\{s_n\}$ is bounded by 1.
- 3. Let $b_n = \frac{2n+7}{n-9}$. Guess the limit, *L*, of the sequence $\{b_n\}$. For which (positive) values of *n* is $b_n \stackrel{\approx}{\underset{0.1}{\circ}} L$?
- 4. Let $b_n = \frac{n+3}{n^2+n+19}$. Guess the limit, *L*, of the sequence $\{b_n\}$. For which (positive) values of *n* is $b_n \stackrel{\approx}{\underset{0,001}{\sim}} L$?
- Let {b_n} be a sequence. Give the definition of: {b_n} converges.
 Define: {b_n} converges to L.

6. Let
$$z_n = \frac{1789 + \cos(2018n)}{3n + 88}$$
. Prove that $\{z_n\}$ converges to a limit L.
7. Let $e_n = \sqrt{n^2 + 5n + 1789} - \sqrt{n^2 + n + 1689}$. Prove that $\{e_n\}$ converges to a limit L.

✤ MORE ON LIMITS

- **1.** Prove that if a sequence converges to *L*, then *L* is unique.
- 2. Prove that if $\{a_n\}$ is a non-negative sequence converging to 0, the sequence $\{\sqrt{a_n}\}$ must converge to 0 as well.
- **3.** Define $\lim_{n \to \infty} a_n = \infty$.
- **4.** Prove that the sequence $a_n = 1 + n^2 \rightarrow \infty$.

- 5. Which of the following sequences tend to ∞ ? For those that do, prove it.
 - (a) $(-1)^2$
 - (b) $\frac{n}{n+4}$
 - (c) $(-1)^n n^2$
 - (d) $\sqrt[3]{n+1}$
 - (e) $1+n^2$
 - (f) $(-1)^n + \sin n + e^n$
 - (g) $\sin n + \ln n$

6. Prove that the sequence $a_n = \frac{1}{n+1} + \frac{3}{n+2}$ converges.

- **7.** State the K-ε Principle.
- 8. Using the K- ε Principle prove that the sequence $a_n = \frac{1}{n+1} + \frac{3}{n+2}$ converges.

9. Using the K-
$$\varepsilon$$
 Principle prove that the sequence $b_n = \frac{n}{2n+1} + \frac{n}{n+2}$ converges.

10. Prove that
$$\lim_{n \to \infty} \frac{15n^3 + 2018}{5n^3 + n + 1}$$
 exists.

- **11.** Prove that $\ln(\ln n) \rightarrow \infty$.
- 12. Prove that $\frac{e^{3n}}{2018+e^n} \to \infty$.

13. Prove the theorem: If a > l then $\lim_{n \to \infty} a^n = \infty$.

Hint: let a = 1 + k where k > 0. Then apply the binomial theorem.

14. *Prove the Corollary to the Theorem above, viz.*

If
$$0 < a < I$$
 then $\lim_{n \to \infty} a^n = 0$.
15. Find $\lim_{n \to \infty} \left(1 - \frac{\alpha}{100000}\right)^n$ given that $100000 > \alpha > 0$.
16. Find $\lim_{n \to \infty} \left(\sin^8 \frac{\pi}{5}\right)^n$.

17. Prove that every convergent sequence is bounded.

Everything should be made as simple as possible, but not simpler.