MATH 351: QUESTIONS FOR CLASS DISCUSSION, 12 SEPTEMBER 2018

We shouldn't hunt rabbits Dad, we should breed them! According to Fibonacci, we would then have an endless food supply...

- **1.** *Review:*
 - (a) Prove that $\lim_{n \to \infty} \frac{20n+9}{10n-3} = 2.$
 - (b) Determine whether $\lim_{n \to \infty} (\sqrt{n + 2018} \sqrt{n})$ exists. If so, find its limit and verify using the definition of limit.
 - (c) Determine whether $\lim \frac{n^2+1}{(n+1)^2}$ exists. If so, find its limit and verify using the definition of limit.
 - (d) Determine whether $\lim_{n \to \infty} \frac{n^2 + 13}{\sqrt{n^2 + 3n}}$ exists. If so, find its limit and verify using the definition of limit.
- 2. Prove that if a sequence converges to *L*, then *L* is unique.
- **3.** Prove that every convergent sequence is bounded.
- 4. Prove that if $\{a_n\}$ is a non-negative sequence converging to 0, the sequence $\{\sqrt{a_n}\}$ must converge to 0 as well.
- 5. Define $\lim a_n = \infty$.
- 6. Prove that the sequence $a_n = 1 + n^2 \rightarrow \infty$.
- 7. Which of the following sequences tend to ∞ ? For those that do, prove it.

(a) $(-1)^2$

(b)
$$\frac{n}{n+4}$$

(c) $(-1)^n n^2$
(d) $\sqrt[3]{n+1}$
(e) $1+n^2$
(f) $(-1)^n + \sin n + e^n$
(g) $\sin n + \ln n$

8. State the K- ε Principle. Prove that the sequence $a_n = \frac{1}{n+1} + \frac{3}{n+2}$ converges. 9. Using the K- ε Principle prove that the sequence $b_n = \frac{n}{2n+1} + \frac{n}{n+2}$ converges.

- **10.** Prove that $\ln(\ln n) \rightarrow \infty$.
- 11. Prove that $\frac{e^{3n}}{2018+e^n} \to \infty$.
- 12. Prove the theorem: If a > I then $\lim_{n \to \infty} a^n = \infty$.

Hint: let a = 1 + k *where* k > 0*. Then apply the binomial theorem.*

13. Prove the Corollary to the Theorem above, viz.

 $\label{eq:linear} \text{If } 0 < a < I \text{ then } \lim_{n \to \infty} a^n = \ 0.$

14. Prove that every convergent sequence is bounded.

15. (a) Find $\lim_{n \to \infty} \left(1 - \frac{\alpha}{100000}\right)^n$ given that $\alpha > 0$. (b) Find $\lim_{n \to \infty} \left(\cos^8\left(\frac{\pi}{5}\right)\right)^n$ (c) Find $\lim_{n \to \infty} (\ln 3)^n$ **16.** Let $c_n = \int_0^1 (x^2 + 3)^n dx$. Find $\lim_{n \to \infty} c_n$.

- 17. Let $d_n = \int_0^1 (x^2 + 1)^n dx$. Find $\lim_{n \to \infty} d_n$.
- **18.** Let $s_n = \int_0^{\pi/2} \sin^n x \, dx$. Find $\lim_{n \to \infty} s_n$.
- **19.** Prove that if $a_n \to L$ and $b_n \to M$ then $a_n + b_n \to L + M$.