MATH 351: QUESTIONS FOR CLASS DISCUSSION, 12 SEPTEMBER 2018

1. Review:
(a) Prove that $\lim _{n \rightarrow \infty} \frac{20 n+9}{10 n-3}=2$.
(b) Determine whether $\lim _{n \rightarrow \infty}(\sqrt{n+2018}-\sqrt{n})$ exists. If so, find its limit and verify using the definition of limit.
(c) Determine whether $\lim \frac{n^{2}+1}{(n+1)^{2}}$ exists. If so, find its limit and verify using the definition of limit.
(d) Determine whether $\lim _{n \rightarrow \infty} \frac{n^{2}+13}{\sqrt{n^{2}+3 n}}$ exists. If so, find its limit and verify using the definition of limit.
2. Prove that if a sequence converges to L, then L is unique.
3. Prove that every convergent sequence is bounded.
4. Prove that if $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a non-negative sequence converging to 0 , the sequence $\left\{\sqrt{a_{n}}\right\}$ must converge to 0 as well.
5. Define lim $\mathrm{a}_{\mathrm{n}}=\infty$.
6. Prove that the sequence $a_{n}=1+n^{2} \rightarrow \infty$.
7. Which of the following sequences tend to ∞ ? For those that do, prove it.
(a) $(-1)^{2}$
(b) $\frac{n}{n+4}$
(c) $(-1)^{\mathrm{n}} \mathrm{n}^{2}$
(d) $\sqrt[3]{n+1}$
(e) $1+n^{2}$
(f) $(-1)^{n}+\sin n+e^{n}$
(g) $\sin n+\ln n$
8. State the $\mathrm{K}-\varepsilon$ Principle. Prove that the sequence $a_{n}=\frac{1}{n+1}+\frac{3}{n+2}$ converges.
9. Using the K- ε Principle prove that the sequence $b_{n}=\frac{n}{2 n+1}+\frac{n}{n+2}$ converges.
10. Prove that $\ln (\ln n) \rightarrow \infty$.
11. Prove that $\frac{e^{3 n}}{2018+e^{n}} \rightarrow \infty$.
12. Prove the theorem: If $a>$ I then $\lim _{n \rightarrow \infty} a^{n}=\infty$.

Hint: let $a=1+k$ where $k>0$. Then apply the binomial theorem.
13. Prove the Corollary to the Theorem above, viz.

$$
\text { If } 0<a<\text { I then } \lim _{n \rightarrow \infty} a^{n}=0
$$

14. Prove that every convergent sequence is bounded.
15. (a) Find $\lim _{\mathrm{n} \rightarrow \infty}\left(1-\frac{\alpha}{100000}\right)^{\mathrm{n}}$ given that $\alpha>0$.
(b) Find $\lim _{\mathrm{n} \rightarrow \infty}\left(\cos ^{8}\left(\frac{\pi}{5}\right)\right)^{\mathrm{n}}$
(c) Find $\lim _{\mathrm{n} \rightarrow \infty}(\ln 3)^{\mathrm{n}}$
16. Let $c_{n}=\int_{0}^{1}\left(x^{2}+3\right)^{n} d x$. Find $\lim _{n \rightarrow \infty} c_{n}$.
17. Let $d_{n}=\int_{0}^{1}\left(x^{2}+1\right)^{n} d x$. Find $\lim _{n \rightarrow \infty} d_{n}$.
18. Let $s_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x$. Find $\lim _{n \rightarrow \infty} s_{n}$.
19. Prove that if $a_{n} \rightarrow L$ and $b_{n} \rightarrow M$ then $a_{n}+b_{n} \rightarrow L+M$.
